Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 131309 by shaker last updated on 03/Feb/21

Answered by Ar Brandon last updated on 03/Feb/21

z^5 +(1/( (√2)))+(1/( (√2)))i=0 ⇒z^5 +e^((π/4)i) =0  z^5 =−e^((π/4)i) =e^((π/4)i+(2k+1)πi) =e^(((8k+5)/4)πi)   z=e^(((8k+5)/(20))πi) , k∈[0, 4]

z5+12+12i=0z5+eπ4i=0z5=eπ4i=eπ4i+(2k+1)πi=e8k+54πiz=e8k+520πi,k[0,4]

Answered by mathmax by abdo last updated on 03/Feb/21

z^5  +(1/( (√2)))+(i/( (√2)))=0 ⇒z^5  =−e^((iπ)/4)  =e^(iπ) .e^((iπ)/4)  =e^(i(π+(π/4)) ) =e^(i((5π)/4))  =e^(i(((5π)/4)+2kπ))  ⇒  the roots are z_k =e^((i(((5π)/4)+2kπ))/(5 )) =e^(((iπ)/4) +i((2kπ)/5))   with k∈[[0,4]]

z5+12+i2=0z5=eiπ4=eiπ.eiπ4=ei(π+π4)=ei5π4=ei(5π4+2kπ)therootsarezk=ei(5π4+2kπ)5=eiπ4+i2kπ5withk[[0,4]]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com