Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 131328 by rs4089 last updated on 03/Feb/21

Commented by MJS_new last updated on 04/Feb/21

really?  just try some values with n=k^2 ∧k∈N  y_k =(((2k^2 )!)/2^k )  y_1 =1  y_2 =10080  y_3 =800296713216000  ...  y_(10) ≈7.70×10^(371)   ...  ⇒ the answer is +∞

$$\mathrm{really}? \\ $$$$\mathrm{just}\:\mathrm{try}\:\mathrm{some}\:\mathrm{values}\:\mathrm{with}\:{n}={k}^{\mathrm{2}} \wedge{k}\in\mathbb{N} \\ $$$${y}_{{k}} =\frac{\left(\mathrm{2}{k}^{\mathrm{2}} \right)!}{\mathrm{2}^{{k}} } \\ $$$${y}_{\mathrm{1}} =\mathrm{1} \\ $$$${y}_{\mathrm{2}} =\mathrm{10080} \\ $$$${y}_{\mathrm{3}} =\mathrm{800296713216000} \\ $$$$... \\ $$$${y}_{\mathrm{10}} \approx\mathrm{7}.\mathrm{70}×\mathrm{10}^{\mathrm{371}} \\ $$$$... \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:+\infty \\ $$

Commented by liberty last updated on 04/Feb/21

wrong answer 0

$$\mathrm{wrong}\:\mathrm{answer}\:\mathrm{0}\: \\ $$

Answered by mathmax by abdo last updated on 03/Feb/21

u_n =(((2n)!)/2^(√n) )  we have  n! ∼n^n  e^(−n) (√(2πn))( stirling formula) ⇒  (2n)!∼(2n)^(2n)  e^(−2n) (√(4πn)) ⇒u_n ∼((2^(2n)  n^(2n)  e^(−2n) 2(√(πn)))/2^(√n) ) ⇒  u_n ∼n^(2n)  .e^(−2n)  .2^(2n−(√n))  (√(πn ))⇒  ln(u_n )=2nln(n)−2n+((n−(√n))ln(2)+(1/2)ln(nπ) ⇒  ln(u_n ) =2n{((ln(n))/(2n))−1 (((n−(√n))ln2)/(2n)) +((ln(nπ))/(4n))}∼2n{−1+(1/2)}∼−n ⇒  lim_(n→+∞) ln(u_n )=−∞ ⇒lim_(n→+∞) u_n =0

$$\mathrm{u}_{\mathrm{n}} =\frac{\left(\mathrm{2n}\right)!}{\mathrm{2}^{\sqrt{\mathrm{n}}} }\:\:\mathrm{we}\:\mathrm{have}\:\:\mathrm{n}!\:\sim\mathrm{n}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\left(\:\mathrm{stirling}\:\mathrm{formula}\right)\:\Rightarrow \\ $$$$\left(\mathrm{2n}\right)!\sim\left(\mathrm{2n}\right)^{\mathrm{2n}} \:\mathrm{e}^{−\mathrm{2n}} \sqrt{\mathrm{4}\pi\mathrm{n}}\:\Rightarrow\mathrm{u}_{\mathrm{n}} \sim\frac{\mathrm{2}^{\mathrm{2n}} \:\mathrm{n}^{\mathrm{2n}} \:\mathrm{e}^{−\mathrm{2n}} \mathrm{2}\sqrt{\pi\mathrm{n}}}{\mathrm{2}^{\sqrt{\mathrm{n}}} }\:\Rightarrow \\ $$$$\mathrm{u}_{\mathrm{n}} \sim\mathrm{n}^{\mathrm{2n}} \:.\mathrm{e}^{−\mathrm{2n}} \:.\mathrm{2}^{\mathrm{2n}−\sqrt{\mathrm{n}}} \:\sqrt{\pi\mathrm{n}\:}\Rightarrow \\ $$$$\mathrm{ln}\left(\mathrm{u}_{\mathrm{n}} \right)=\mathrm{2nln}\left(\mathrm{n}\right)−\mathrm{2n}+\left(\left(\mathrm{n}−\sqrt{\mathrm{n}}\right)\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{n}\pi\right)\:\Rightarrow\right. \\ $$$$\mathrm{ln}\left(\mathrm{u}_{\mathrm{n}} \right)\:=\mathrm{2n}\left\{\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{2n}}−\mathrm{1}\:\frac{\left(\mathrm{n}−\sqrt{\mathrm{n}}\right)\mathrm{ln2}}{\mathrm{2n}}\:+\frac{\mathrm{ln}\left(\mathrm{n}\pi\right)}{\mathrm{4n}}\right\}\sim\mathrm{2n}\left\{−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right\}\sim−\mathrm{n}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{ln}\left(\mathrm{u}_{\mathrm{n}} \right)=−\infty\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{u}_{\mathrm{n}} =\mathrm{0} \\ $$

Answered by liberty last updated on 04/Feb/21

  (((2n)!)/2^(√n) ) ≥ (2^n /2^(√n) ) =2^(n−(√n))    this follows from (2n)! having factors 2,4,6,8,...,2n  because lim_(n→∞) (n−(√n) )= lim_(n→∞) (√n) ((√n) −1)=∞  we have lim_(n→∞) 2^(n−(√n))  = ∞ .  so lim_(n→∞) (((2n)!)/2^(√n) ) = ∞

$$\:\:\frac{\left(\mathrm{2n}\right)!}{\mathrm{2}^{\sqrt{\mathrm{n}}} }\:\geqslant\:\frac{\mathrm{2}^{\mathrm{n}} }{\mathrm{2}^{\sqrt{\mathrm{n}}} }\:=\mathrm{2}^{\mathrm{n}−\sqrt{\mathrm{n}}} \: \\ $$$$\mathrm{this}\:\mathrm{follows}\:\mathrm{from}\:\left(\mathrm{2n}\right)!\:\mathrm{having}\:\mathrm{factors}\:\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{8},...,\mathrm{2n} \\ $$$$\mathrm{because}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{n}−\sqrt{\mathrm{n}}\:\right)=\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{n}}\:\left(\sqrt{\mathrm{n}}\:−\mathrm{1}\right)=\infty \\ $$$$\mathrm{we}\:\mathrm{have}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}2}^{\mathrm{n}−\sqrt{\mathrm{n}}} \:=\:\infty\:. \\ $$$$\mathrm{so}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\mathrm{2n}\right)!}{\mathrm{2}^{\sqrt{\mathrm{n}}} }\:=\:\infty\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com