Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131334 by Algoritm last updated on 03/Feb/21

Answered by bluberry508 last updated on 06/Feb/21

  let  g(x)=∫_0 ^( x) xf ′(t)−tf^( ′) (t)dt =  x∫_0 ^( x) f^( ′) (t)dt−∫_0 ^( x) tf^( ′) (t)dt    (dg/dx)=∫_0 ^( x) f^( ′) (t)dt+xf^( ′) (x)−xf^( ′) (x)  =∫_0 ^( x) f^( ′) (t)dt    differentiate both side of eq 2times    f(x)+xf^( ′) (x)=2x+(dg/dx)=2x+∫_0 ^( x) f^( ′) (t)dt  f^′ (x)+f^( ′) (x)+xf^( ′′) (x)=2+f^( ′) (x)    then,  f ′(x)+xf^( ′′) (x)=2  and if substitute 0 for x   f ′(0)=2  &  f(0) =0      (d/dx)(xf^( ′) (x))=2    ∴ xf^( ′) (x)=2x+C_0         however f(x) is differentiable function  that is f ′(x) is continuous function    lim_(x→0)  f ′(x) =lim_(x→0) ((2x+C_0 )/x)= f ′(0) = 2    hence  C_0 =0  and  f ′(x)=2    ∴ f(x)=2x+C_1   f(0)=0    f(x)=2x      f(1)=2

$$ \\ $$$${let}\:\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} {xf}\:'\left({t}\right)−{tf}^{\:'} \left({t}\right){dt}\:= \\ $$$${x}\int_{\mathrm{0}} ^{\:{x}} {f}^{\:'} \left({t}\right){dt}−\int_{\mathrm{0}} ^{\:{x}} {tf}^{\:'} \left({t}\right){dt} \\ $$$$ \\ $$$$\frac{{dg}}{{dx}}=\int_{\mathrm{0}} ^{\:{x}} {f}^{\:'} \left({t}\right){dt}+{xf}^{\:'} \left({x}\right)−{xf}^{\:'} \left({x}\right) \\ $$$$=\int_{\mathrm{0}} ^{\:{x}} {f}^{\:'} \left({t}\right){dt} \\ $$$$ \\ $$$${differentiate}\:{both}\:{side}\:{of}\:{eq}\:\mathrm{2}{times} \\ $$$$ \\ $$$${f}\left({x}\right)+{xf}^{\:'} \left({x}\right)=\mathrm{2}{x}+\frac{{dg}}{{dx}}=\mathrm{2}{x}+\int_{\mathrm{0}} ^{\:{x}} {f}^{\:'} \left({t}\right){dt} \\ $$$${f}\:^{'} \left({x}\right)+{f}^{\:'} \left({x}\right)+{xf}^{\:''} \left({x}\right)=\mathrm{2}+{f}^{\:'} \left({x}\right) \\ $$$$ \\ $$$${then},\:\:{f}\:'\left({x}\right)+{xf}^{\:''} \left({x}\right)=\mathrm{2} \\ $$$${and}\:{if}\:{substitute}\:\mathrm{0}\:{for}\:{x}\: \\ $$$${f}\:'\left(\mathrm{0}\right)=\mathrm{2}\:\:\&\:\:{f}\left(\mathrm{0}\right)\:=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\frac{{d}}{{dx}}\left({xf}^{\:'} \left({x}\right)\right)=\mathrm{2} \\ $$$$ \\ $$$$\therefore\:{xf}^{\:'} \left({x}\right)=\mathrm{2}{x}+{C}_{\mathrm{0}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${however}\:{f}\left({x}\right)\:{is}\:{differentiable}\:{function} \\ $$$${that}\:{is}\:{f}\:'\left({x}\right)\:{is}\:{continuous}\:{function} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\:'\left({x}\right)\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}{x}+{C}_{\mathrm{0}} }{{x}}=\:{f}\:'\left(\mathrm{0}\right)\:=\:\mathrm{2} \\ $$$$ \\ $$$${hence}\:\:{C}_{\mathrm{0}} =\mathrm{0}\:\:{and}\:\:{f}\:'\left({x}\right)=\mathrm{2} \\ $$$$ \\ $$$$\therefore\:{f}\left({x}\right)=\mathrm{2}{x}+{C}_{\mathrm{1}} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$ \\ $$$${f}\left({x}\right)=\mathrm{2}{x}\:\:\:\:\:\:{f}\left(\mathrm{1}\right)=\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com