Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131405 by bramlexs22 last updated on 04/Feb/21

    ……  super cooles Integral ⋰⋰   ∫_0 ^( ∞) (dx/((1+x^2 )^2 )) =?

supercoolesIntegral\iddots\iddots0dx(1+x2)2=?

Commented by bramlexs22 last updated on 04/Feb/21

  →→⌣→→ok alle antworten sind super

→→⌣→→okalleantwortensindsuper

Commented by Dwaipayan Shikari last updated on 04/Feb/21

For General ∫_0 ^∞ (dx/((1+x^n )^n ))=((Γ(n−(1/n))Γ((1/n)))/(n!))   n≠0 ,1  ∫_0 ^∞ (dx/((1+x^2 )^2 ))=((Γ((3/2))Γ((1/2)))/(2!))=(π/4)  ∫_0 ^∞ (dx/((1+x^3 )^3 ))=((Γ((2/3))Γ((1/3)))/6).(5/3).(2/3)=((10π)/(27(√3)))  ∫_0 ^∞ (dx/((1+x^4 )^4 ))=((231π)/(256(√2)))  ∫_0 ^∞ (dx/((1+x^5 )^5 ))=((2054(√2))/( 9375(√(5−(√5)))))π  ...

ForGeneral0dx(1+xn)n=Γ(n1n)Γ(1n)n!n0,10dx(1+x2)2=Γ(32)Γ(12)2!=π40dx(1+x3)3=Γ(23)Γ(13)6.53.23=10π2730dx(1+x4)4=231π25620dx(1+x5)5=20542937555π...

Answered by mnjuly1970 last updated on 04/Feb/21

φ=^(x=(1/t)) ∫_0 ^( ∞) (1/((1+(1/t^2 ))^2 )) ∗ (dt/t^2 )=∫_0 ^( ∞) (t^4 /((1+t^2 )^2 .t^2 ))dt      =∫_0 ^( ∞) ((t^2 +1−1)/((1+t^2 )^2 ))dt=(π/2)−φ        ∴ φ=(π/4)  ....✓

ϕ=x=1t01(1+1t2)2dtt2=0t4(1+t2)2.t2dt=0t2+11(1+t2)2dt=π2ϕϕ=π4....

Answered by Ar Brandon last updated on 04/Feb/21

x^2 =u ⇒2xdx=du  I=(1/2)∫_0 ^∞ (u^(−(1/2)) /((1+u)^2 ))du=(1/2)β((1/2), (3/2))     =((Γ((1/2))Γ((3/2)))/(2Γ(2)))=(π/4)

x2=u2xdx=duI=120u12(1+u)2du=12β(12,32)=Γ(12)Γ(32)2Γ(2)=π4

Answered by mnjuly1970 last updated on 04/Feb/21

     φ=∫_0 ^( ∞) (dx/((1+x^2 )^2 ))=^(x^2 =t) (1/2)∫_0 ^( ∞) (t^((−1)/2) /((1+t)^2 ))dt  =(1/2)∫_0 ^( ∞) (t^((1/2)−1) /((1+t)^2 ))dt=(1/2)β((1/2) ,(3/2))  =(1/2) ((Γ((1/2))Γ((3/2)))/(Γ(2)))=(1/4) Γ^2 ((1/2))=(π/4)..✓

ϕ=0dx(1+x2)2=x2=t120t12(1+t)2dt=120t121(1+t)2dt=12β(12,32)=12Γ(12)Γ(32)Γ(2)=14Γ2(12)=π4..

Answered by mathmax by abdo last updated on 04/Feb/21

I =∫_0 ^∞   (dx/((1+x^2 )^2 ))  ⇒I=_(x=tant)   ∫_0 ^(π/2)   (((1+tan^2 t))/((1+tan^2 t)^2 ))dt =∫_0 ^(π/2)  (dt/(1+tan^2 t))  =∫_0 ^(π/2) cos^2 t dt =∫_0 ^(π/2) ((1+cos(2t))/2)dt =(π/4)+(1/4)[sin(2t)]_0 ^(π/2)  =(π/4)+0 ⇒  I=(π/4)

I=0dx(1+x2)2I=x=tant0π2(1+tan2t)(1+tan2t)2dt=0π2dt1+tan2t=0π2cos2tdt=0π21+cos(2t)2dt=π4+14[sin(2t)]0π2=π4+0I=π4

Answered by mathmax by abdo last updated on 04/Feb/21

parametric method let f(a) =∫_0 ^∞   (dx/(x^2 +a^2 ))  with a>0 ⇒  f^′ (a) =−∫_0 ^∞   ((2a)/((x^2  +a^2 )^2 ))dx ⇒∫_0 ^∞  (dx/((x^2  +a^2 )^2 ))=−(1/(2a))f^′ (a)  ⇒∫_0 ^∞  (dx/((x^2  +1)^2 ))=−(1/2)f^′ (1)   we have f(a) =_(x=az)   ∫_0 ^∞  ((adz)/(a^2 (1+z^2 )))  =(1/a)∫_0 ^∞  (dz/(1+z^2 )) =(π/(2a)) ⇒f^′ (a) =−(π/(2a^2 )) ⇒f^′ (1)=−(π/2) ⇒  ∫_0 ^∞   (dx/((x^2  +1)^2 ))=−(1/2)(−(π/2))=(π/4)

parametricmethodletf(a)=0dxx2+a2witha>0f(a)=02a(x2+a2)2dx0dx(x2+a2)2=12af(a)0dx(x2+1)2=12f(1)wehavef(a)=x=az0adza2(1+z2)=1a0dz1+z2=π2af(a)=π2a2f(1)=π20dx(x2+1)2=12(π2)=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com