Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 131465 by bramlexs22 last updated on 05/Feb/21

Let a,b and c be three positive real numbers  . Prove that a+b+c ≤ ((a^2 +bc)/(b+c))+((b^2 +ca)/(c+a))+((c^2 +ab)/(a+b))

$${Let}\:{a},{b}\:{and}\:{c}\:{be}\:{three}\:{positive}\:{real}\:{numbers} \\ $$$$.\:{Prove}\:{that}\:{a}+{b}+{c}\:\leqslant\:\frac{{a}^{\mathrm{2}} +{bc}}{{b}+{c}}+\frac{{b}^{\mathrm{2}} +{ca}}{{c}+{a}}+\frac{{c}^{\mathrm{2}} +{ab}}{{a}+{b}} \\ $$

Answered by EDWIN88 last updated on 05/Feb/21

According to the identity ((a^2 +bc)/(b+c))−a=(((a−b)(a−c))/(b+c))  we can change our inequality into the form  x(a−b)(a−c)+y(b−a)(b−c)+z(c−a)(c−b)≥0  in which x=(1/(b+c)) , y=(1/(c+a)) ,z=(1/(a+b))  WLOG ,assume a≥b≥c then x≤y≤z

$${According}\:{to}\:{the}\:{identity}\:\frac{{a}^{\mathrm{2}} +{bc}}{{b}+{c}}−{a}=\frac{\left({a}−{b}\right)\left({a}−{c}\right)}{{b}+{c}} \\ $$$${we}\:{can}\:{change}\:{our}\:{inequality}\:{into}\:{the}\:{form} \\ $$$${x}\left({a}−{b}\right)\left({a}−{c}\right)+{y}\left({b}−{a}\right)\left({b}−{c}\right)+{z}\left({c}−{a}\right)\left({c}−{b}\right)\geqslant\mathrm{0} \\ $$$${in}\:{which}\:{x}=\frac{\mathrm{1}}{{b}+{c}}\:,\:{y}=\frac{\mathrm{1}}{{c}+{a}}\:,{z}=\frac{\mathrm{1}}{{a}+{b}} \\ $$$${WLOG}\:,{assume}\:{a}\geqslant{b}\geqslant{c}\:{then}\:{x}\leqslant{y}\leqslant{z} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com