Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 131470 by bemath last updated on 05/Feb/21

Consider a large tank holding  1000 L of pure water into  which a brine solution of  salt begins to flow at constant  rate of 6L/min. The solution  inside the tank is kept well  stirred and is flowing out of  the tank at rate of 6L/min.  If the concentration of salt  in the brine entering the tank  is 0.1 kg/L, determine when  the concentration of salt  in the tank will reach 0.05 kg/L

$${Consider}\:{a}\:{large}\:{tank}\:{holding} \\ $$$$\mathrm{1000}\:{L}\:{of}\:{pure}\:{water}\:{into} \\ $$$${which}\:{a}\:{brine}\:{solution}\:{of} \\ $$$${salt}\:{begins}\:{to}\:{flow}\:{at}\:{constant} \\ $$$${rate}\:{of}\:\mathrm{6}{L}/{min}.\:{The}\:{solution} \\ $$$${inside}\:{the}\:{tank}\:{is}\:{kept}\:{well} \\ $$$${stirred}\:{and}\:{is}\:{flowing}\:{out}\:{of} \\ $$$${the}\:{tank}\:{at}\:{rate}\:{of}\:\mathrm{6}{L}/{min}. \\ $$$${If}\:{the}\:{concentration}\:{of}\:{salt} \\ $$$${in}\:{the}\:{brine}\:{entering}\:{the}\:{tank} \\ $$$${is}\:\mathrm{0}.\mathrm{1}\:{kg}/{L},\:{determine}\:{when} \\ $$$${the}\:{co}\mathrm{n}{centration}\:{of}\:{salt} \\ $$$${in}\:{the}\:{tank}\:{will}\:{reach}\:\mathrm{0}.\mathrm{05}\:{kg}/{L} \\ $$$$ \\ $$

Commented by bemath last updated on 05/Feb/21

thank all master

$$\mathrm{thank}\:\mathrm{all}\:\mathrm{master} \\ $$

Answered by EDWIN88 last updated on 05/Feb/21

we conclude that the input rate of salt into  the tank is (6L/min)×(0.1 kg/min)=0.6 kg/min  out put rate of salt is (6L/min) [ ((x(t))/(1000)) kg/L ] = ((3x(t))/(500)) kg/min  where x(t) denote the mass of salt in tank at time t  ⇔ (dx/dt) = 0.6−((3x)/(500)) ; x(0)=0   ⇔ (dx/(100−x)) = (3/(500)) dt ; ln ∣100−x∣=−(3/(500))t+c  ⇔100−x(t)=λe^(−(3/(500))t)  ; t=0 ;x(0)=0  ⇒ 100=λ ; 100−x(t)=100e^(−(3/(500)) t)   ⇔x(t) = 100(1−e^(−((3t)/(500)))  )   ((x(t))/(1000)) = 0.1(1−e^(−((3t)/(500)))  ) kg/L   to determine when the concentration of  salt is 0.05 kg/L  this gives    0.1(1−e^(−((3t)/(500)))  )= 0.05 ; e^(−((3t)/(500)))  = 0.5   t = ((500.ln 2)/3) ≈ 115.52 min

$$\mathrm{we}\:\mathrm{conclude}\:\mathrm{that}\:\mathrm{the}\:\mathrm{input}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{salt}\:\mathrm{into} \\ $$$$\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\left(\mathrm{6L}/\mathrm{min}\right)×\left(\mathrm{0}.\mathrm{1}\:\mathrm{kg}/\mathrm{min}\right)=\mathrm{0}.\mathrm{6}\:\mathrm{kg}/\mathrm{min} \\ $$$$\mathrm{out}\:\mathrm{put}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{salt}\:\mathrm{is}\:\left(\mathrm{6L}/\mathrm{min}\right)\:\left[\:\frac{\mathrm{x}\left(\mathrm{t}\right)}{\mathrm{1000}}\:\mathrm{kg}/\mathrm{L}\:\right]\:=\:\frac{\mathrm{3x}\left(\mathrm{t}\right)}{\mathrm{500}}\:\mathrm{kg}/\mathrm{min} \\ $$$$\mathrm{where}\:\mathrm{x}\left(\mathrm{t}\right)\:\mathrm{denote}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{salt}\:\mathrm{in}\:\mathrm{tank}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t} \\ $$$$\Leftrightarrow\:\frac{\mathrm{dx}}{\mathrm{dt}}\:=\:\mathrm{0}.\mathrm{6}−\frac{\mathrm{3x}}{\mathrm{500}}\:;\:\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\Leftrightarrow\:\frac{\mathrm{dx}}{\mathrm{100}−\mathrm{x}}\:=\:\frac{\mathrm{3}}{\mathrm{500}}\:\mathrm{dt}\:;\:\mathrm{ln}\:\mid\mathrm{100}−\mathrm{x}\mid=−\frac{\mathrm{3}}{\mathrm{500}}\mathrm{t}+\mathrm{c} \\ $$$$\Leftrightarrow\mathrm{100}−\mathrm{x}\left(\mathrm{t}\right)=\lambda\mathrm{e}^{−\frac{\mathrm{3}}{\mathrm{500}}\mathrm{t}} \:;\:\mathrm{t}=\mathrm{0}\:;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{100}=\lambda\:;\:\mathrm{100}−\mathrm{x}\left(\mathrm{t}\right)=\mathrm{100e}^{−\frac{\mathrm{3}}{\mathrm{500}}\:\mathrm{t}} \\ $$$$\Leftrightarrow\mathrm{x}\left(\mathrm{t}\right)\:=\:\mathrm{100}\left(\mathrm{1}−\mathrm{e}^{−\frac{\mathrm{3t}}{\mathrm{500}}} \:\right) \\ $$$$\:\frac{\mathrm{x}\left(\mathrm{t}\right)}{\mathrm{1000}}\:=\:\mathrm{0}.\mathrm{1}\left(\mathrm{1}−\mathrm{e}^{−\frac{\mathrm{3t}}{\mathrm{500}}} \:\right)\:\mathrm{kg}/\mathrm{L} \\ $$$$\:\mathrm{to}\:\mathrm{determine}\:\mathrm{when}\:\mathrm{the}\:\mathrm{concentration}\:\mathrm{of} \\ $$$$\mathrm{salt}\:\mathrm{is}\:\mathrm{0}.\mathrm{05}\:\mathrm{kg}/\mathrm{L}\:\:\mathrm{this}\:\mathrm{gives}\: \\ $$$$\:\mathrm{0}.\mathrm{1}\left(\mathrm{1}−\mathrm{e}^{−\frac{\mathrm{3t}}{\mathrm{500}}} \:\right)=\:\mathrm{0}.\mathrm{05}\:;\:\mathrm{e}^{−\frac{\mathrm{3t}}{\mathrm{500}}} \:=\:\mathrm{0}.\mathrm{5} \\ $$$$\:\mathrm{t}\:=\:\frac{\mathrm{500}.\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\:\approx\:\mathrm{115}.\mathrm{52}\:\mathrm{min} \\ $$

Answered by mr W last updated on 05/Feb/21

S=salt in tank (kg)  s=salt concentration (kg/l)=(S/(1000))  (dS/dt)=0.1×6−(S/(1000))×6=(6/(1000))(100−S)  (dS/(100−S))=(6/(1000))dt  ∫_0 ^S (dS/(100−S))=(6/(1000))∫_0 ^t dt  ln ((100)/(100−S))=((6t)/(1000))  S=100(1−e^(−((6t)/(1000))) )  salt concentration:  s=(S/(1000))=(1/(10))(1−e^(−((6t)/(1000))) )    s=(1/(10))(1−e^(−((6t)/(1000))) )=0.05  e^(−((6t)/(1000))) =(1/2)  t=((1000)/6)ln 2≈115.5 min

$${S}={salt}\:{in}\:{tank}\:\left({kg}\right) \\ $$$${s}={salt}\:{concentration}\:\left({kg}/{l}\right)=\frac{{S}}{\mathrm{1000}} \\ $$$$\frac{{dS}}{{dt}}=\mathrm{0}.\mathrm{1}×\mathrm{6}−\frac{{S}}{\mathrm{1000}}×\mathrm{6}=\frac{\mathrm{6}}{\mathrm{1000}}\left(\mathrm{100}−{S}\right) \\ $$$$\frac{{dS}}{\mathrm{100}−{S}}=\frac{\mathrm{6}}{\mathrm{1000}}{dt} \\ $$$$\int_{\mathrm{0}} ^{{S}} \frac{{dS}}{\mathrm{100}−{S}}=\frac{\mathrm{6}}{\mathrm{1000}}\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\mathrm{ln}\:\frac{\mathrm{100}}{\mathrm{100}−{S}}=\frac{\mathrm{6}{t}}{\mathrm{1000}} \\ $$$${S}=\mathrm{100}\left(\mathrm{1}−{e}^{−\frac{\mathrm{6}{t}}{\mathrm{1000}}} \right) \\ $$$${salt}\:{concentration}: \\ $$$${s}=\frac{{S}}{\mathrm{1000}}=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{1}−{e}^{−\frac{\mathrm{6}{t}}{\mathrm{1000}}} \right) \\ $$$$ \\ $$$${s}=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{1}−{e}^{−\frac{\mathrm{6}{t}}{\mathrm{1000}}} \right)=\mathrm{0}.\mathrm{05} \\ $$$${e}^{−\frac{\mathrm{6}{t}}{\mathrm{1000}}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${t}=\frac{\mathrm{1000}}{\mathrm{6}}\mathrm{ln}\:\mathrm{2}\approx\mathrm{115}.\mathrm{5}\:{min} \\ $$

Answered by TheSupreme last updated on 05/Feb/21

Q_(in) =6 l/min (x_(in)  = 0.1 kg/L)  Q_(out) =6 l/min (x_(out) =x(t))  V_(tot) =1000L  Δm_(salt) =ΔxV=m_(in) −m_(out) =∫_0 ^t (Q_(in) x_(in) −Q_(out) x_(out) )dt  V(dx_(out) /dt)=Q_(in) x_(in) −Q_(out) x_(out)   ((x′)/((x_1 −x)))=−(Q/V)  ln(((x_1 −x)/x_1 ))=−(Q/V)  (x_1 −x)=x_1 e^(−(Q/V)t)   x=x_1 (1−e^(−(Q/V)t) )  x=x_1 /2  (1/2)=e^(−(Q/V)t)   (Q/V)t=ln(2)  t=Vln(2)/Q    in this example t=115,52 min

$${Q}_{{in}} =\mathrm{6}\:{l}/{min}\:\left({x}_{{in}} \:=\:\mathrm{0}.\mathrm{1}\:{kg}/{L}\right) \\ $$$${Q}_{{out}} =\mathrm{6}\:{l}/{min}\:\left({x}_{{out}} ={x}\left({t}\right)\right) \\ $$$${V}_{{tot}} =\mathrm{1000}{L} \\ $$$$\Delta{m}_{{salt}} =\Delta{xV}={m}_{{in}} −{m}_{{out}} =\int_{\mathrm{0}} ^{{t}} \left({Q}_{{in}} {x}_{{in}} −{Q}_{{out}} {x}_{{out}} \right){dt} \\ $$$${V}\frac{{dx}_{{out}} }{{dt}}={Q}_{{in}} {x}_{{in}} −{Q}_{{out}} {x}_{{out}} \\ $$$$\frac{{x}'}{\left({x}_{\mathrm{1}} −{x}\right)}=−\frac{{Q}}{{V}} \\ $$$${ln}\left(\frac{{x}_{\mathrm{1}} −{x}}{{x}_{\mathrm{1}} }\right)=−\frac{{Q}}{{V}} \\ $$$$\left({x}_{\mathrm{1}} −{x}\right)={x}_{\mathrm{1}} {e}^{−\frac{{Q}}{{V}}{t}} \\ $$$${x}={x}_{\mathrm{1}} \left(\mathrm{1}−{e}^{−\frac{{Q}}{{V}}{t}} \right) \\ $$$${x}={x}_{\mathrm{1}} /\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}={e}^{−\frac{{Q}}{{V}}{t}} \\ $$$$\frac{{Q}}{{V}}{t}={ln}\left(\mathrm{2}\right) \\ $$$${t}={Vln}\left(\mathrm{2}\right)/{Q} \\ $$$$ \\ $$$${in}\:{this}\:{example}\:{t}=\mathrm{115},\mathrm{52}\:{min} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com