Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 131484 by bemath last updated on 05/Feb/21

Express Σ_(n=1) ^(49)  (1/( (√(n+(√(n^2 −1)))))) as a+b(√2)  for some integers a and b

Express49n=11n+n21asa+b2forsomeintegersaandb

Answered by benjo_mathlover last updated on 05/Feb/21

Answered by mr W last updated on 05/Feb/21

(1/( (√(n+(√(n^2 −1))))))  =(√(n−(√(n^2 −1))))  =(√(n−(√((n−1)(n+1)))))  =(√(((n−1)/2)+((n+1)/2)−2(√((((n−1)/2))(((n+1)/2))))))  =(√(((√((n−1)/2)))^2 +((√((n+1)/2)))^2 −2(√((((n−1)/2))(((n+1)/2))))))  =(√(((√((n+1)/2))−(√((n−1)/2)))^2 ))  =(√((n+1)/2))−(√((n−1)/2))  Σ_(n=1) ^(49) ((√((n+1)/2))−(√((n−1)/2)))  =Σ_(n=2) ^(50) (√(k/2))−Σ_(k=0) ^(48) (√(k/2))  =(Σ_(k=0) ^(48) (√(k/2))+(√((49)/2))+(√((50)/2))−(√(1/2))−(√(0/2)))−Σ_(k=0) ^(48) (√(k/2))  =(√((49)/2))+(√((50)/2))−(√(1/2))−(√(0/2))  =(7/( (√2)))+5−(1/( (√2)))  =5+(6/( (√2)))  =5+3(√2)

1n+n21=nn21=n(n1)(n+1)=n12+n+122(n12)(n+12)=(n12)2+(n+12)22(n12)(n+12)=(n+12n12)2=n+12n1249n=1(n+12n12)=50n=2k248k=0k2=(48k=0k2+492+5021202)48k=0k2=492+5021202=72+512=5+62=5+32

Answered by Dwaipayan Shikari last updated on 05/Feb/21

(√(n+(√(n^2 −1)))) =(√((n+(√(n^2 −n^2 +1)))/2))+(√((n−(√(n^2 −n^2 +1)))/2))  =(√((n+1)/2))  −(√((n−1)/2))  Σ_(n=1) ^(49) (1/( (√((n+1)/2))−(√((n−1)/2))))=(1/( (√2)))Σ_(n=1) ^(49) (√(n+1))−(√(n−1))  =(1/( (√2)))((√2)−0+(√3)−1+(√4)−(√2)+....+(√(49))−(√(47))+(√(50))−(√(48)))  =(1/( (√2)))(5(√2)+(√(49))−1)=5+3(√2)

n+n21=n+n2n2+12+nn2n2+12=n+12n1249n=11n+12n12=1249n=1n+1n1=12(20+31+42+....+4947+5048)=12(52+491)=5+32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com