Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 131488 by Ahmed1hamouda last updated on 05/Feb/21

Answered by Ñï= last updated on 18/Feb/21

y′′+2y′+5y=6e^(2x) +xsin^2 x+e^x cos2x  y_p =(1/(D^2 +2D+5))(6e^(2x) +xsin^2 x+e^x cos2x)      =(6/(2^2 +2×2+5))e^(2x) +e^x (D^2 −2D+5)(1/((D^2 +5)^2 −4D^2 ))cos2x+(1/(D^2 +2D+5))xsin^2 x      =(6/(13))e^(2x) +e^x (1−2D)cos2x+(1/(D^2 +2D+5))Im(e^(2ix) x)      =(6/(13))e^(2x) +e^x (cos2x+4sin2x)+Im((1/(D^2 +2D+5))e^(2ix) x)      =(6/(13))e^(2x) +e^x (cos2x+4sin2x)+Im(e^(2ix) (1/((D+2i)^2 +4i+5))x)      =(6/(13))e^(2x) +e^x (cos2x+4sin2x)+Im(e^(2ix) (1/(4i+1))∙(1/((D^2 /(4i+1))+((4iD)/(4i+1))+1))x)      =(6/(13))e^(2x) +e^x (cos2x+4sin2x)+Im[e^(2ix) (1/(4i+1))∙(x−((4i)/(4i+1)))]      =(6/(13))e^(2x) +e^x (cos2x+4sin2x)−((4x)/(15))cos2x−(x/(15))sin2x−((16)/(15))sin2x−(4/(15))cos2x  λ^2 +2λ+5=0⇒λ_1 =−1+2i,λ=−1−2i  y=C_1 e^(−x) sin2x+C_2 e^(−x) cos2x+(6/(13))e^(2x) +e^x (cos2x+4sin2x)−((4x)/(15))cos2x−(x/(15))sin2x−((16)/(15))sin2x−(4/(15))cos2x

y+2y+5y=6e2x+xsin2x+excos2xyp=1D2+2D+5(6e2x+xsin2x+excos2x)=622+2×2+5e2x+ex(D22D+5)1(D2+5)24D2cos2x+1D2+2D+5xsin2x=613e2x+ex(12D)cos2x+1D2+2D+5Im(e2ixx)=613e2x+ex(cos2x+4sin2x)+Im(1D2+2D+5e2ixx)=613e2x+ex(cos2x+4sin2x)+Im(e2ix1(D+2i)2+4i+5x)=613e2x+ex(cos2x+4sin2x)+Im(e2ix14i+11D24i+1+4iD4i+1+1x)=613e2x+ex(cos2x+4sin2x)+Im[e2ix14i+1(x4i4i+1)]=613e2x+ex(cos2x+4sin2x)4x15cos2xx15sin2x1615sin2x415cos2xλ2+2λ+5=0λ1=1+2i,λ=12iy=C1exsin2x+C2excos2x+613e2x+ex(cos2x+4sin2x)4x15cos2xx15sin2x1615sin2x415cos2x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com