Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131517 by benjo_mathlover last updated on 05/Feb/21

Given ∫_0 ^3 f(x)dx=∫_0 ^3 (2x−1)dx+∫_0 ^3 (∫_0 ^3 f(x)dx)dx  find ∫_(−1) ^1 f(x)dx .

Given03f(x)dx=03(2x1)dx+03(03f(x)dx)dxfind11f(x)dx.

Answered by EDWIN88 last updated on 05/Feb/21

let ∫_0 ^3 f(x)dx =ℓ ⇒ℓ=[ x^2 −x]_0 ^3  + ∫_0 ^3 ℓ dx  ℓ = 6+3ℓ ; ℓ = −3 or ∫_0 ^3 f(x)dx =−3  then −3 = ∫_0 ^3 (2x−1)dx+∫_0 ^3 −3dx  ⇒ −3 = ∫_0 ^3 (2x−4)dx ⇒∫_0 ^3 f(x)dx =∫_0 ^3 (2x−4)dx  by theorem ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  we have ∫_0 ^3 f(x)dx=∫_0 ^3 f(3−x)dx ; so   f(3−x) = 2x−4 or f(x)=2(3−x)−4=2−2x  Now ∫_(−1) ^1 f(x)dx = ∫_(−1) ^1 (2−2x)dx=[ 2x−x^2  ]_(−1) ^1   = (1)−(−3)= 4.  check if f(x)=2−2x ⇒∫_0 ^3 f(x)dx=∫_0 ^3 (2−2x)dx   = [ 2x−x^2 ]_0 ^3  = 6−9=−3 (true)

let30f(x)dx==[x2x]03+03dx=6+3;=3or30f(x)dx=3then3=30(2x1)dx+303dx3=30(2x4)dx30f(x)dx=30(2x4)dxbytheorembaf(x)dx=baf(a+bx)dxwehave30f(x)dx=30f(3x)dx;sof(3x)=2x4orf(x)=2(3x)4=22xNow11f(x)dx=11(22x)dx=[2xx2]11=(1)(3)=4.checkiff(x)=22x30f(x)dx=30(22x)dx=[2xx2]03=69=3(true)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com