All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 131517 by benjo_mathlover last updated on 05/Feb/21
Given∫03f(x)dx=∫03(2x−1)dx+∫03(∫03f(x)dx)dxfind∫1−1f(x)dx.
Answered by EDWIN88 last updated on 05/Feb/21
let∫30f(x)dx=ℓ⇒ℓ=[x2−x]03+∫03ℓdxℓ=6+3ℓ;ℓ=−3or∫30f(x)dx=−3then−3=∫30(2x−1)dx+∫30−3dx⇒−3=∫30(2x−4)dx⇒∫30f(x)dx=∫30(2x−4)dxbytheorem∫baf(x)dx=∫baf(a+b−x)dxwehave∫30f(x)dx=∫30f(3−x)dx;sof(3−x)=2x−4orf(x)=2(3−x)−4=2−2xNow∫1−1f(x)dx=∫1−1(2−2x)dx=[2x−x2]−11=(1)−(−3)=4.checkiff(x)=2−2x⇒∫30f(x)dx=∫30(2−2x)dx=[2x−x2]03=6−9=−3(true)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com