Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 131729 by ajfour last updated on 07/Feb/21

Commented by ajfour last updated on 07/Feb/21

Find radius of sphere of density  ρ that receives maximum  normal reaction from wall.

$${Find}\:{radius}\:{of}\:{sphere}\:{of}\:{density} \\ $$$$\rho\:{that}\:{receives}\:{maximum} \\ $$$${normal}\:{reaction}\:{from}\:{wall}. \\ $$

Answered by mr W last updated on 08/Feb/21

let λ=(r/R)  m=((4πr^3 ρ)/3)=((4πR^3 ρλ^3 )/3)  cos θ=((R−r)/(R+r))=((1−λ)/(1+λ))  N=((mg)/(tan θ))=((4πρgR^3 λ^3 )/(3(√((((1+λ)/(1−λ)))^2 −1))))=((4πρgR^3 )/3)f(λ)  f(λ)=(λ^3 /( (√((((1+λ)/(1−λ)))^2 −1))))  f_(max) ≈0.0616 at λ≈0.7143  N_(max) ≈0.0616Mg  M=masse of sphere with radius R  and same density ρ

$${let}\:\lambda=\frac{{r}}{{R}} \\ $$$${m}=\frac{\mathrm{4}\pi{r}^{\mathrm{3}} \rho}{\mathrm{3}}=\frac{\mathrm{4}\pi{R}^{\mathrm{3}} \rho\lambda^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{cos}\:\theta=\frac{{R}−{r}}{{R}+{r}}=\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda} \\ $$$${N}=\frac{{mg}}{\mathrm{tan}\:\theta}=\frac{\mathrm{4}\pi\rho{gR}^{\mathrm{3}} \lambda^{\mathrm{3}} }{\mathrm{3}\sqrt{\left(\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}\right)^{\mathrm{2}} −\mathrm{1}}}=\frac{\mathrm{4}\pi\rho{gR}^{\mathrm{3}} }{\mathrm{3}}{f}\left(\lambda\right) \\ $$$${f}\left(\lambda\right)=\frac{\lambda^{\mathrm{3}} }{\:\sqrt{\left(\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}\right)^{\mathrm{2}} −\mathrm{1}}} \\ $$$${f}_{{max}} \approx\mathrm{0}.\mathrm{0616}\:{at}\:\lambda\approx\mathrm{0}.\mathrm{7143} \\ $$$${N}_{{max}} \approx\mathrm{0}.\mathrm{0616}{Mg} \\ $$$${M}={masse}\:{of}\:{sphere}\:{with}\:{radius}\:{R} \\ $$$${and}\:{same}\:{density}\:\rho \\ $$

Commented by mr W last updated on 08/Feb/21

great! you got it exactly!

$${great}!\:{you}\:{got}\:{it}\:{exactly}! \\ $$

Commented by ajfour last updated on 08/Feb/21

Commented by ajfour last updated on 08/Feb/21

cos θ=((1−λ)/(1+λ))  λ=((1−cos θ)/(1+cos θ))=tan^2 (θ/2)  N=((4/3)πρR^3 )g{((tan^6 (θ/2)(1−tan^2 (θ/2)))/(2tan (θ/2)))}  say  tan (θ/2)=x  ⇒ N=((2/3)πρR^3 g)(x^5 −x^7 )  (dN/(d(tan (θ/2))))=0  ⇒ 5x^4 =7x^6   x^2 =(5/7)=λ=(r/R)≈0.7143  N_(max) =((Mg)/2)(((25)/(49))−((125)/(343)))(√(5/7))  N_(max) =((25(√5))/(343(√7)))Mg             =((25(√5))/(343(√7)))((1/λ^3 ))mg  N_(max) =((mg)/( (√(35))))  N_(max) ≈0.0616Mg

$$\mathrm{cos}\:\theta=\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda} \\ $$$$\lambda=\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta}=\mathrm{tan}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$${N}=\left(\frac{\mathrm{4}}{\mathrm{3}}\pi\rho{R}^{\mathrm{3}} \right){g}\left\{\frac{\mathrm{tan}\:^{\mathrm{6}} \frac{\theta}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\right)}{\mathrm{2tan}\:\frac{\theta}{\mathrm{2}}}\right\} \\ $$$${say}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={x} \\ $$$$\Rightarrow\:{N}=\left(\frac{\mathrm{2}}{\mathrm{3}}\pi\rho{R}^{\mathrm{3}} {g}\right)\left({x}^{\mathrm{5}} −{x}^{\mathrm{7}} \right) \\ $$$$\frac{{dN}}{{d}\left(\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right)}=\mathrm{0}\:\:\Rightarrow\:\mathrm{5}{x}^{\mathrm{4}} =\mathrm{7}{x}^{\mathrm{6}} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{7}}=\lambda=\frac{{r}}{{R}}\approx\mathrm{0}.\mathrm{7143} \\ $$$${N}_{{max}} =\frac{{Mg}}{\mathrm{2}}\left(\frac{\mathrm{25}}{\mathrm{49}}−\frac{\mathrm{125}}{\mathrm{343}}\right)\sqrt{\frac{\mathrm{5}}{\mathrm{7}}} \\ $$$${N}_{{max}} =\frac{\mathrm{25}\sqrt{\mathrm{5}}}{\mathrm{343}\sqrt{\mathrm{7}}}{Mg} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{25}\sqrt{\mathrm{5}}}{\mathrm{343}\sqrt{\mathrm{7}}}\left(\frac{\mathrm{1}}{\lambda^{\mathrm{3}} }\right){mg} \\ $$$${N}_{{max}} =\frac{{mg}}{\:\sqrt{\mathrm{35}}} \\ $$$${N}_{{max}} \approx\mathrm{0}.\mathrm{0616}{Mg}\:\: \\ $$

Commented by ajfour last updated on 08/Feb/21

Thank you Sir, exact answer  isn′t complicated, Sir!

$${Thank}\:{you}\:{Sir},\:{exact}\:{answer} \\ $$$${isn}'{t}\:{complicated},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com