Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 131767 by ajfour last updated on 08/Feb/21

Commented by ajfour last updated on 08/Feb/21

Find force of Normal reaction  between the cylinders hanging  on a belt wrap.

$${Find}\:{force}\:{of}\:{Normal}\:{reaction} \\ $$$${between}\:{the}\:{cylinders}\:{hanging} \\ $$$${on}\:{a}\:{belt}\:{wrap}. \\ $$

Answered by mr W last updated on 08/Feb/21

Commented by mr W last updated on 08/Feb/21

T=tension in belt  N=normal contact force  C=com of both cylinders  CD is perpendicular to horizontal  AB=R+r  AC=((M(R+r))/(M+m))  CB=((m(R+r))/(M+m))  let a=DE=DF  2(tan^(−1) (r/a)+tan^(−1) (R/a))=45° (given)  tan^(−1) (r/a)+tan^(−1) (R/a)=((45°)/2)  (((r/a)+(R/a))/(1−(r/a)×(R/a)))=tan ((45°)/2)=(√2)−1  ((√2)−1)a^2 −(R+r)a−((√2)−1)Rr=0  ⇒a=((R+r+(√(R^2 +r^2 +2(7−4(√2))Rr)))/(2((√2)−1)))  α=tan^(−1) (a/r)=(π/2)−tan^(−1) (r/a)  β=tan^(−1) (a/R)=(π/2)−tan^(−1) (R/a)  ((sin γ)/(BC))=((sin (γ+β))/(DB))  ((DB)/(BC))=((sin (γ+β))/(sin γ))=cos β+((sin β)/(tan γ))  (((M+m)(√(a^2 +R^2 )))/(m(R+r)))=(R/( (√(a^2 +R^2 ))))+(a/(tan γ(√(a^2 +R^2 ))))  ⇒tan γ=(a/((((M+m)(a^2 +R^2 ))/(m(R+r)))−R))  ⇒γ=tan^(−1) ((m(R+r)a)/((M+m)(a^2 +R^2 )−m(R+r)R))  φ=(π/2)+sin^(−1) ((R−r)/(R+r))  δ=π−φ−2 tan^(−1) (R/a)=(π/2)−sin^(−1) ((R−r)/(R+r))−2 tan^(−1) (R/a)  ϕ=(π/2)−β−γ  ⇒ϕ=(π/2)−tan^(−1) (a/R)−tan^(−1) ((m(R+r)a)/((M+m)(a^2 +R^2 )−m(R+r)R))  θ=(π/2)−(π/8)−δ  ⇒θ=sin^(−1) ((R−r)/(R+r))+2 tan^(−1) (R/a)−(π/8)    2T cos ((45°)/2)=(M+m)g  ⇒T=(((√(2(2−(√2))))(M+m)g)/2)  N cos ϕ=T(sin ((45°)/2)+cos θ)  N=(√(2(2−(√2))))(M+m)g×(((((√2)−1)/( (√(2(2−(√2))))))+cos (sin^(−1) ((R−r)/(R+r))+2 tan^(−1) (R/a)−(π/8)))/(2 sin (tan^(−1) (a/R)+tan^(−1) ((m(R+r)a)/((M+m)(a^2 +R^2 )−m(R+r)R)))))  ⇒(N/((M+m)g))=(((√2)−1+(√(2(2−(√2)))) cos (sin^(−1) ((R−r)/(R+r))+2 tan^(−1) (R/a)−(π/8)))/(2 cos (tan^(−1) (R/a)−tan^(−1) ((m(R+r)a)/((M+m)(a^2 +R^2 )−m(R+r)R)))))

$${T}={tension}\:{in}\:{belt} \\ $$$${N}={normal}\:{contact}\:{force} \\ $$$${C}={com}\:{of}\:{both}\:{cylinders} \\ $$$${CD}\:{is}\:{perpendicular}\:{to}\:{horizontal} \\ $$$${AB}={R}+{r} \\ $$$${AC}=\frac{{M}\left({R}+{r}\right)}{{M}+{m}} \\ $$$${CB}=\frac{{m}\left({R}+{r}\right)}{{M}+{m}} \\ $$$${let}\:{a}={DE}={DF} \\ $$$$\mathrm{2}\left(\mathrm{tan}^{−\mathrm{1}} \frac{{r}}{{a}}+\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}\right)=\mathrm{45}°\:\left({given}\right) \\ $$$$\mathrm{tan}^{−\mathrm{1}} \frac{{r}}{{a}}+\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}=\frac{\mathrm{45}°}{\mathrm{2}} \\ $$$$\frac{\frac{{r}}{{a}}+\frac{{R}}{{a}}}{\mathrm{1}−\frac{{r}}{{a}}×\frac{{R}}{{a}}}=\mathrm{tan}\:\frac{\mathrm{45}°}{\mathrm{2}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){a}^{\mathrm{2}} −\left({R}+{r}\right){a}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){Rr}=\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{{R}+{r}+\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{2}}\right){Rr}}}{\mathrm{2}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)} \\ $$$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{r}}=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{{r}}{{a}} \\ $$$$\beta=\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{R}}=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}} \\ $$$$\frac{\mathrm{sin}\:\gamma}{{BC}}=\frac{\mathrm{sin}\:\left(\gamma+\beta\right)}{{DB}} \\ $$$$\frac{{DB}}{{BC}}=\frac{\mathrm{sin}\:\left(\gamma+\beta\right)}{\mathrm{sin}\:\gamma}=\mathrm{cos}\:\beta+\frac{\mathrm{sin}\:\beta}{\mathrm{tan}\:\gamma} \\ $$$$\frac{\left({M}+{m}\right)\sqrt{{a}^{\mathrm{2}} +{R}^{\mathrm{2}} }}{{m}\left({R}+{r}\right)}=\frac{{R}}{\:\sqrt{{a}^{\mathrm{2}} +{R}^{\mathrm{2}} }}+\frac{{a}}{\mathrm{tan}\:\gamma\sqrt{{a}^{\mathrm{2}} +{R}^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{tan}\:\gamma=\frac{{a}}{\frac{\left({M}+{m}\right)\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)}{{m}\left({R}+{r}\right)}−{R}} \\ $$$$\Rightarrow\gamma=\mathrm{tan}^{−\mathrm{1}} \frac{{m}\left({R}+{r}\right){a}}{\left({M}+{m}\right)\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)−{m}\left({R}+{r}\right){R}} \\ $$$$\phi=\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{{R}−{r}}{{R}+{r}} \\ $$$$\delta=\pi−\phi−\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}=\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{{R}−{r}}{{R}+{r}}−\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}} \\ $$$$\varphi=\frac{\pi}{\mathrm{2}}−\beta−\gamma \\ $$$$\Rightarrow\varphi=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{R}}−\mathrm{tan}^{−\mathrm{1}} \frac{{m}\left({R}+{r}\right){a}}{\left({M}+{m}\right)\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)−{m}\left({R}+{r}\right){R}} \\ $$$$\theta=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{8}}−\delta \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{{R}−{r}}{{R}+{r}}+\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}−\frac{\pi}{\mathrm{8}} \\ $$$$ \\ $$$$\mathrm{2}{T}\:\mathrm{cos}\:\frac{\mathrm{45}°}{\mathrm{2}}=\left({M}+{m}\right){g} \\ $$$$\Rightarrow{T}=\frac{\sqrt{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}\left({M}+{m}\right){g}}{\mathrm{2}} \\ $$$${N}\:\mathrm{cos}\:\varphi={T}\left(\mathrm{sin}\:\frac{\mathrm{45}°}{\mathrm{2}}+\mathrm{cos}\:\theta\right) \\ $$$${N}=\sqrt{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}\left({M}+{m}\right){g}×\frac{\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}}+\mathrm{cos}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{{R}−{r}}{{R}+{r}}+\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}−\frac{\pi}{\mathrm{8}}\right)}{\mathrm{2}\:\mathrm{sin}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{{a}}{{R}}+\mathrm{tan}^{−\mathrm{1}} \frac{{m}\left({R}+{r}\right){a}}{\left({M}+{m}\right)\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)−{m}\left({R}+{r}\right){R}}\right)} \\ $$$$\Rightarrow\frac{{N}}{\left({M}+{m}\right){g}}=\frac{\sqrt{\mathrm{2}}−\mathrm{1}+\sqrt{\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}\:\mathrm{cos}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{{R}−{r}}{{R}+{r}}+\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}−\frac{\pi}{\mathrm{8}}\right)}{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{{R}}{{a}}−\mathrm{tan}^{−\mathrm{1}} \frac{{m}\left({R}+{r}\right){a}}{\left({M}+{m}\right)\left({a}^{\mathrm{2}} +{R}^{\mathrm{2}} \right)−{m}\left({R}+{r}\right){R}}\right)} \\ $$

Commented by ajfour last updated on 08/Feb/21

Looks a fabulous design Sir.  I couldn′t dare attempt, let me  some time following...

$${Looks}\:{a}\:{fabulous}\:{design}\:{Sir}. \\ $$$${I}\:{couldn}'{t}\:{dare}\:{attempt},\:{let}\:{me} \\ $$$${some}\:{time}\:{following}... \\ $$

Commented by otchereabdullai@gmail.com last updated on 10/Feb/21

You are gifted prof W

$$\mathrm{You}\:\mathrm{are}\:\mathrm{gifted}\:\mathrm{prof}\:\mathrm{W} \\ $$

Answered by ajfour last updated on 08/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com