Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 131789 by bemath last updated on 08/Feb/21

Let ϕ = lim_(x→0)  ((x^4 +3(a^2 −(√(a^4 +x^4 )) ))/x^8 ) ; a>0  If ϕ is finite then   (a) a=(3/2)    (b) a=(√(3/2))      (c) ϕ=(1/3)    (d) ϕ=(1/9)

Letφ=limx0x4+3(a2a4+x4)x8;a>0 Ifφisfinitethen (a)a=32(b)a=32(c)φ=13(d)φ=19

Answered by Dwaipayan Shikari last updated on 08/Feb/21

lim_(x→0) ((x^4 +3(a^2 −a^2 (1+(x^4 /(2a^4 ))−(x^8 /(8a^8 )))))/x^8 )=((x^4 −((3x^4 )/(2a^2 ))+((3x^8 )/(8a^6 )))/x^8 ) =ϕ  ⇒x^4 −((3x^4 )/(2a^2 ))=0  ⇒1=(3/(2a^2 ))⇒a=±(√(3/2))  ϕ=(3/(8a^6 ))=(3/8).(8/(27))=(1/9)

limx0x4+3(a2a2(1+x42a4x88a8))x8=x43x42a2+3x88a6x8=φ x43x42a2=01=32a2a=±32 φ=38a6=38.827=19

Answered by EDWIN88 last updated on 08/Feb/21

ϕ = lim_(x→0) (((x^4 +3a^2 )−3(√(a^4 +x^4 )))/x^8 ) =  ϕ = lim_(x→0)  (((x^4 +3a^2 )^2 −9(a^4 +x^4 ))/(x^8 ((x^4 +3a^2 )+3(√(a^4 +x^4 ))))))=  ϕ = (1/(6a^2 )) ×lim_(x→0) ((x^8 +6a^2 x^4 +9a^4 −9a^4 −9x^4 )/x^8 )  ϕ=(1/(6a^2 )) × lim_(x→0)  ((x^8 +x^4 (6a^2 −9))/x^8 )   since the value of ϕ is finite it follows that   6a^2 −9 must be is zero ; a = (√(3/2))  then ϕ = (1/(6((9/6)))) = (1/9)

φ=limx0(x4+3a2)3a4+x4x8= φ=limx0(x4+3a2)29(a4+x4)x8((x4+3a2)+3a4+x4))= φ=16a2×limx0x8+6a2x4+9a49a49x4x8 φ=16a2×limx0x8+x4(6a29)x8 sincethevalueofφisfiniteitfollowsthat 6a29mustbeiszero;a=32 thenφ=16(96)=19

Commented byliberty last updated on 08/Feb/21

Hallo Herr wie geht es dir

HalloHerrwiegehtesdir

Commented byEDWIN88 last updated on 08/Feb/21

  Hallo Herr auch.  Gute Nachrichten

HalloHerrauch.GuteNachrichten

Terms of Service

Privacy Policy

Contact: info@tinkutara.com