Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 131795 by Dwaipayan Shikari last updated on 08/Feb/21

(1/1^3 )+(1/2^3 )+(1/5^3 )+(1/(10^3 ))+(1/(17^3 ))+(1/(26^3 ))+(1/(37^3 ))+(1/(50^3 ))+(1/(65^3 ))+(1/(82^3 ))+(1/(101^3 ))+...

113+123+153+1103+1173+1263+1373+1503+1653+1823+11013+...

Answered by Olaf last updated on 08/Feb/21

Let u_n  = n^2 −2n+2  u_n  = 1, 2, 5, 10, 17, 26, 37, 50, 65...  S = Σ_(n=1) ^∞ (1/((n^2 −2n+2)^3 ))  S = Σ_(n=1) ^∞ (1/((n−e^(−i(π/4)) )^3 (n−e^(+i(π/4)) )^3 ))  ...

Letun=n22n+2un=1,2,5,10,17,26,37,50,65...S=n=11(n22n+2)3S=n=11(neiπ4)3(ne+iπ4)3...

Commented by mindispower last updated on 08/Feb/21

=Σ_(n≥1) (1/(((n−1)^2 +1)^3 ))  =Σ_(n≥0) (1/((n^2 +1)^3 ))  f(x)=Σ_(n≥0) (1/(n^2 +x^2 ))  cot(x)=(1/x)+2Σ(x/(x^2 −n^2 π^2 ))  ⇒πcot(πx)=(1/x)+2Σ(x/(x^2 −n^2 ))  x=it⇒πcot(iπt)=(1/(it))+2Σ((it)/(−t^2 −n^2 ))  iπth(πt)=(1/(it))+2Σ_(n≥1) ((it)/(−t^2 −n^2 ))  ⇒Σ_(n≥1) (1/(t^2 +n^2 ))=(π/(2t))th(πt)−(1/(2t^2 ))  Σ(1/(x+n^2 ))=(π/(2(√x)))th(π(√x))−(1/(2x))  tack 3 rd derivat and x=1

=n11((n1)2+1)3=n01(n2+1)3f(x)=n01n2+x2cot(x)=1x+2Σxx2n2π2πcot(πx)=1x+2Σxx2n2x=itπcot(iπt)=1it+2Σitt2n2iπth(πt)=1it+2n1itt2n2n11t2+n2=π2tth(πt)12t2Σ1x+n2=π2xth(πx)12xtack3rdderivatandx=1

Commented by Dwaipayan Shikari last updated on 08/Feb/21

yes sir!

yessir!

Commented by mindispower last updated on 09/Feb/21

withe pleasur

withepleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com