Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 131823 by mr W last updated on 09/Feb/21

Commented by mr W last updated on 10/Feb/21

a small sphere of mass m is released  from rest at position as shown.  both the sphere and the semi cylinder  move without friction.  find the time the sphere needs to  hit the ground.

asmallsphereofmassmisreleasedfromrestatpositionasshown.boththesphereandthesemicylindermovewithoutfriction.findthetimethesphereneedstohittheground.

Answered by mr W last updated on 09/Feb/21

Commented by mr W last updated on 10/Feb/21

Commented by mr W last updated on 10/Feb/21

Commented by mr W last updated on 09/Feb/21

θ_0 =cos^(−1) ((R−r)/(R+r))  θ_1 =sin^(−1) (r/(R+r))

θ0=cos1RrR+rθ1=sin1rR+r

Commented by mr W last updated on 11/Feb/21

let ω=(dθ/dt), α=(dω/dt), μ=(M/m)  x_Q =r+(R+r)cos θ  V=(dx_Q /dt)=ω(dx_Q /dθ)=−(R+r)ω sin θ  A=(dV/dt)=−(R+r)(α sin θ+ω^2  cos θ)    y_P =(R+r)sin θ  v=−(dy_P /dt)=−ω(dy_P /dθ)=−(R+r)ω cos θ  a=(dv/dt)=−(R+r)(α cos θ−ω^2  sin θ)    ((MV^2 +mv^2 )/2)=mg(R+r)(sin θ_0 −sin θ)  (M/m)V^2 +v^2 =2g(R+r)(sin θ_0 −sin θ)    [(M/m) sin^2  θ+ cos^2  θ]ω^2 (R+r)^2 =2g(R+r)(sin θ_0 −sin θ)  ⇒ω^2 =((2g)/(R+r))×((sin θ_0 −sin θ)/(μ sin^2  θ+ cos^2  θ))    N cos θ=MA  ⇒N=−((M(R+r))/(cos θ))(α sin θ+ω^2  cos θ)  mg−N sin θ=ma  N=((m(g−a))/(sin θ))  ⇒N=((m(R+r))/(sin θ))((g/(R+r))+α cos θ−ω^2  sin θ)    ((m(R+r))/(sin θ))((g/(R+r))+α cos θ−ω^2  sin θ)=−((M(R+r))/(cos θ))(α sin θ+ω^2  cos θ)  (g/(R+r))+α cos θ−ω^2  sin θ=−((μsin θ)/(cos θ))(α sin θ+ω^2  cos θ)  α=−((cos θ)/(μsin^2  θ+cos^2  θ))[(g/(R+r))+(μ−1)sin θ ω^2 ]  ⇒α=−(g/(R+r))×((cos θ)/(μsin^2  θ+cos^2  θ))[1+((2(μ−1)sin θ (sin θ_0 −sin θ))/(μ sin^2  θ+ cos^2  θ))]    ⇒N=−M(R+r)(((sin θ)/(cos θ))α+ω^2 )  ⇒N=Mg{((sin θ)/(μ sin^2  θ+cos^2  θ))[1+((2(μ−1)sin θ (sin θ_0 −sin θ))/(μ sin^2  θ+ cos^2  θ))]−((2(sin θ_0 −sin θ))/(μ sin^2  θ+ cos^2  θ))}  ⇒(N/(mg))=(μ/(μ sin^2  θ+cos^2  θ))[sin θ−((2(sin θ_0 −sin θ))/(μ sin^2  θ+ cos^2  θ))]    say N=0 at θ=θ_2 .  N=0 ⇒ sin θ−((2(sin θ_0 −sin θ))/(μ sin^2  θ+ cos^2  θ))=0  sin θ=((2(sin θ_0 −sin θ))/((μ−1) sin^2  θ+1))  sin^3  θ+(3/(μ−1)) sin θ−(2/(μ−1)) sin θ_0 =0  if μ=1:   3 sin θ−2 sin θ_0 =0  ⇒sin θ=(2/3) sin θ_0   ⇒θ_2 =sin^(−1) (((2 sin θ_0 )/3))  for μ≠1:  let λ=(1/(μ−1))=(m/(M−m))  sin^3  θ+3λ sin θ−2λ sin θ_0 =0  Δ=λ^3 +λ^2 sin^2  θ_0 =λ^2 (λ+sin^2  θ_0 )  for λ+sin^2  θ_0 =(1/(μ−1))+sin^2  θ_0 >0, i.e.  for μ>1:  sin θ=((λ((√(λ+sin^2  θ_0 ))+sin θ_0 )))^(1/3) −((λ((√(λ+sin^2  θ_0 ))−sin θ_0 )))^(1/3)   ⇒θ_2 =sin^(−1) [(((1/(μ−1))((√((1/(μ−1))+sin^2  θ_0 ))+sin θ_0 )))^(1/3) −(((1/(μ−1))((√((1/(μ−1))+sin^2  θ_0 ))−sin θ_0 )))^(1/3) ]  for μ<1:  sin θ=(2/( (√(1−μ)))) sin [(1/3)sin^(−1) ((√(1−μ)) sin θ_0 )+((2kπ)/3)]  ⇒θ_2 =sin^(−1) {(2/( (√(1−μ)))) sin [(1/3)sin^(−1) ((√(1−μ)) sin θ_0 )]}  we get θ_2 >θ_1 ,see diagram.  that means the sphere losses contact  before it hits the ground. after this  point the sphere has free fall.    T_1 = time for θ from θ_0  to θ_2   T_2 = time for free fall after θ_2   ⇒ω=(dθ/dt)=−(√((2g)/(R+r)))×(√((sin θ_0 −sin θ)/(μ sin^2  θ+ cos^2  θ)))  ⇒T_1 =(√((R+r)/(2g)))∫_θ_2  ^θ_0  (√((1+(μ−1) sin^2  θ)/(sin θ_0 −sin θ)))dθ    v=(√(2g(R+r)))×cos θ(√((sin θ_0 −sin θ)/(μ sin^2  θ+ cos^2  θ)))  v_2 =(√(2g(R+r)))×cos θ_2 (√((sin θ_0 −sin θ_2 )/(μ sin^2  θ_2 + cos^2  θ_2 )))  Δh=(R+r)sin θ_2 −r  Δh=v_2 T_2 +(1/2)gT_2 ^2   T_2 =(1/g)((√(v_2 ^2 +2gΔh))−v_2 )    total time:  T=T_1 +T_2

letω=dθdt,α=dωdt,μ=MmxQ=r+(R+r)cosθV=dxQdt=ωdxQdθ=(R+r)ωsinθA=dVdt=(R+r)(αsinθ+ω2cosθ)yP=(R+r)sinθv=dyPdt=ωdyPdθ=(R+r)ωcosθa=dvdt=(R+r)(αcosθω2sinθ)MV2+mv22=mg(R+r)(sinθ0sinθ)MmV2+v2=2g(R+r)(sinθ0sinθ)[Mmsin2θ+cos2θ]ω2(R+r)2=2g(R+r)(sinθ0sinθ)ω2=2gR+r×sinθ0sinθμsin2θ+cos2θNcosθ=MAN=M(R+r)cosθ(αsinθ+ω2cosθ)mgNsinθ=maN=m(ga)sinθN=m(R+r)sinθ(gR+r+αcosθω2sinθ)m(R+r)sinθ(gR+r+αcosθω2sinθ)=M(R+r)cosθ(αsinθ+ω2cosθ)gR+r+αcosθω2sinθ=μsinθcosθ(αsinθ+ω2cosθ)α=cosθμsin2θ+cos2θ[gR+r+(μ1)sinθω2]α=gR+r×cosθμsin2θ+cos2θ[1+2(μ1)sinθ(sinθ0sinθ)μsin2θ+cos2θ]N=M(R+r)(sinθcosθα+ω2)N=Mg{sinθμsin2θ+cos2θ[1+2(μ1)sinθ(sinθ0sinθ)μsin2θ+cos2θ]2(sinθ0sinθ)μsin2θ+cos2θ}Nmg=μμsin2θ+cos2θ[sinθ2(sinθ0sinθ)μsin2θ+cos2θ]sayN=0atθ=θ2.N=0sinθ2(sinθ0sinθ)μsin2θ+cos2θ=0sinθ=2(sinθ0sinθ)(μ1)sin2θ+1sin3θ+3μ1sinθ2μ1sinθ0=0ifμ=1:3sinθ2sinθ0=0sinθ=23sinθ0θ2=sin1(2sinθ03)forμ1:letλ=1μ1=mMmsin3θ+3λsinθ2λsinθ0=0Δ=λ3+λ2sin2θ0=λ2(λ+sin2θ0)forλ+sin2θ0=1μ1+sin2θ0>0,i.e.forμ>1:sinθ=λ(λ+sin2θ0+sinθ0)3λ(λ+sin2θ0sinθ0)3θ2=sin1[1μ1(1μ1+sin2θ0+sinθ0)31μ1(1μ1+sin2θ0sinθ0)3]forμ<1:sinθ=21μsin[13sin1(1μsinθ0)+2kπ3]θ2=sin1{21μsin[13sin1(1μsinθ0)]}wegetθ2>θ1,seediagram.thatmeansthespherelossescontactbeforeithitstheground.afterthispointthespherehasfreefall.T1=timeforθfromθ0toθ2T2=timeforfreefallafterθ2ω=dθdt=2gR+r×sinθ0sinθμsin2θ+cos2θT1=R+r2gθ2θ01+(μ1)sin2θsinθ0sinθdθv=2g(R+r)×cosθsinθ0sinθμsin2θ+cos2θv2=2g(R+r)×cosθ2sinθ0sinθ2μsin2θ2+cos2θ2Δh=(R+r)sinθ2rΔh=v2T2+12gT22T2=1g(v22+2gΔhv2)totaltime:T=T1+T2

Commented by mr W last updated on 10/Feb/21

Commented by mr W last updated on 10/Feb/21

God bless you too!

Godblessyoutoo!

Commented by otchereabdullai@gmail.com last updated on 10/Feb/21

Amen

Amen

Commented by otchereabdullai@gmail.com last updated on 10/Feb/21

You are too much prof W  God bless you

YouaretoomuchprofWGodblessyou

Commented by mr W last updated on 10/Feb/21

Commented by ajfour last updated on 10/Feb/21

Ncos θ=MA  mg−Nsin θ=ma  asin θ=Acos θ  ⇒  mg=ma+((MAsin θ)/(cos θ))  ⇒  mg=ma+((Masin^2 θ)/(cos^2 θ))  a=(g/(1+λtan^2 θ))       where λ=(M/m)  A=((gtan θ)/(1+λtan^2 θ))  ⇒  Normal reaction N is not  zero  before ball touches ground;  so it appears from the  acceleration expressions...  What d′ya think Sir?  (dv/dt)=(g/(1+λtan^2 θ))  y=(R+r)sin θ  v=(−(dθ/dt))(R+r)cos θ  ⇒∫vdv=−g(R+r)∫((cos θdθ)/(1+λtan^2 θ))  (v^2 /2)=g(R+r)∫_θ_0  ^( θ) (((1−sin^2 θ)d(sin θ))/(1+(λ−1)sin^2 θ))  (v^2 /2)=((g(R+r))/(λ−1))∫ (((1−s^2 )ds)/(s^2 +(1/(λ−1))))  ((v^2 (λ−1))/(2g(R+r)))=−∫ds+(1/(λ−1))∫(ds/(s^2 +(1/(λ−1))))  ((v^2 (λ−1))/(2g(R+r)))=−s+(1/( (√(λ−1))))tan^(−1) (s(√(λ−1))))

Ncosθ=MAmgNsinθ=maasinθ=Acosθmg=ma+MAsinθcosθmg=ma+Masin2θcos2θa=g1+λtan2θwhereλ=MmA=gtanθ1+λtan2θNormalreactionNisnotzerobeforeballtouchesground;soitappearsfromtheaccelerationexpressions...WhatdyathinkSir?dvdt=g1+λtan2θy=(R+r)sinθv=(dθdt)(R+r)cosθvdv=g(R+r)cosθdθ1+λtan2θv22=g(R+r)θ0θ(1sin2θ)d(sinθ)1+(λ1)sin2θv22=g(R+r)λ1(1s2)dss2+1λ1v2(λ1)2g(R+r)=ds+1λ1dss2+1λ1v2(λ1)2g(R+r)=s+1λ1tan1(sλ1))

Commented by mr W last updated on 10/Feb/21

thanks so far sir!  i agree with v sin θ=V cos θ, but it  doesn′t follow that asin θ=Acos θ.  please recheck!

thankssofarsir!iagreewithvsinθ=Vcosθ,butitdoesntfollowthatasinθ=Acosθ.pleaserecheck!

Commented by mr W last updated on 11/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com