Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 131825 by liberty last updated on 09/Feb/21

  Σ_(n=1) ^∞  ((2n−1)/2^n ) ?

n=12n12n?

Answered by mr W last updated on 09/Feb/21

method 1  Σ_(n=1) ^∞ x^(2n) =(x^2 /(1−x^2 ))  Σ_(n=1) ^∞ x^(2n−1) =(x/(1−x^2 ))  Σ_(n=1) ^∞ (2n−1)x^(2n−2) =(1/(1−x^2 ))+((2x^2 )/((1−x^2 )^2 ))  Σ_(n=1) ^∞ (2n−1)x^(2n) =(x^2 /(1−x^2 ))+((2x^4 )/((1−x^2 )^2 ))  x^2 =(1/2)  Σ_(n=1) ^∞ ((2n−1)/2^n )=((1/2)/(1−(1/2)))+((2×(1/4))/((1−(1/2))^2 ))=1+2=3

method1n=1x2n=x21x2n=1x2n1=x1x2n=1(2n1)x2n2=11x2+2x2(1x2)2n=1(2n1)x2n=x21x2+2x4(1x2)2x2=12n=12n12n=12112+2×14(112)2=1+2=3

Commented by liberty last updated on 09/Feb/21

cool...

cool...

Commented by mr W last updated on 09/Feb/21

method 2:  Σ_(n=1) ^∞ ((2n−1)/2^n )  =Σ_(n=1) ^∞ (n/2^(n−1) )−Σ_(n=1) ^∞ (1/2^n )=S_1 −S_2   S_2 =(1/2)+((1/2))^2 +((1/2))^3 +...=((1/2)/(1−(1/2)))=1  S_1 =1+(2/2^1 )+(3/2^2 )+(4/2^3 )+...  (1/2)S_1 =(1/2)+(2/2^2 )+(3/2^3 )+(4/2^4 )+...  (1−(1/2))S_1 =1+(1/2)+(1/2^2 )+(1/2^3 )+...=1+S_2 =2  ⇒S_1 =2×2=4  ⇒Σ_(n=1) ^∞ ((2n−1)/2^n )=4−1=3

method2:n=12n12n=n=1n2n1n=112n=S1S2S2=12+(12)2+(12)3+...=12112=1S1=1+221+322+423+...12S1=12+222+323+424+...(112)S1=1+12+122+123+...=1+S2=2S1=2×2=4n=12n12n=41=3

Answered by Dwaipayan Shikari last updated on 09/Feb/21

Method ⌊π⌋:)               S=x+3x^2 +5x^3 +7x^4 +..  S(1−x)=x+2x^2 +2x^2 +...  S(1−x)=((2x)/((1−x)))−x⇒S=((2x)/((1−x)^2 ))−(x/((1−x)))    (x=(1/2))  S=4−1=3

Methodπ:)S=x+3x2+5x3+7x4+..S(1x)=x+2x2+2x2+...S(1x)=2x(1x)xS=2x(1x)2x(1x)(x=12)S=41=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com