Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131866 by mnjuly1970 last updated on 09/Feb/21

                   ...advanced   calculus...      Ω=∫_0 ^( ∞) (dx/(x^5 (e^(1/x) −1)))=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:\:{calculus}... \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{dx}}{{x}^{\mathrm{5}} \left({e}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)}=? \\ $$$$ \\ $$

Answered by mnjuly1970 last updated on 09/Feb/21

     solution:     Ω=^(x=(1/t))  ∫_0 ^( ∞) (t^5 /(e^t −1))∗(dt/t^2 )          =∫_0 ^( ∞) (t^3 /(e^t −1))dt=Γ(4)ζ(4)=(π^4 /(15))     note: ∫_0 ^( ∞) (x^(s−1) /(e^x −1))dx=Γ(s).ζ(s)

$$\:\:\:\:\:{solution}: \\ $$$$\:\:\:\Omega\overset{{x}=\frac{\mathrm{1}}{{t}}} {=}\:\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{\mathrm{5}} }{{e}^{{t}} −\mathrm{1}}\ast\frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\infty} \frac{{t}^{\mathrm{3}} }{{e}^{{t}} −\mathrm{1}}{dt}=\Gamma\left(\mathrm{4}\right)\zeta\left(\mathrm{4}\right)=\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$\:\:\:{note}:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{{s}−\mathrm{1}} }{{e}^{{x}} −\mathrm{1}}{dx}=\Gamma\left({s}\right).\zeta\left({s}\right) \\ $$

Answered by mathmax by abdo last updated on 10/Feb/21

Φ=∫_0 ^∞  (dx/(x^5 (e^(1/x) −1))) ⇒Φ=_((1/x)=t)    −∫_0 ^∞   (t^5 /((e^t −1)))(−(dt/t^2 ))=∫_0 ^∞  (t^3 /(e^t −1))dt  =∫_0 ^∞  ((e^(−t)  t^3 )/(1−e^(−t) ))dt =∫_0 ^∞  t^3  e^(−t)  Σ_(n=0) ^∞  e^(−nt)  dt  =Σ_(n=0) ^∞  ∫_0 ^∞  t^3  e^(−(n+1)t)  dt =_((n+1)t=u)   Σ_(n=0) ^∞  ∫_0 ^∞ (u^3 /((n+1)^3 ))e^(−u)  (du/(n+1))  =Σ_(n=0) ^∞  (1/((n+1)^4 ))∫_0 ^∞  u^(4−1)  e^(−u)  du  =ξ(4).Γ(4) =(π^4 /(90)).3!  =(6/(90)).π^4  =((2.3)/(3.30))π^4  =(π^4 /(15))

$$\Phi=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{5}} \left(\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} −\mathrm{1}\right)}\:\Rightarrow\Phi=_{\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{t}} \:\:\:−\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{5}} }{\left(\mathrm{e}^{\mathrm{t}} −\mathrm{1}\right)}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{t}} \:\mathrm{t}^{\mathrm{3}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{t}} }\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{t}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nt}} \:\mathrm{dt} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}} \:\mathrm{dt}\:=_{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}=\mathrm{u}} \:\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{\mathrm{3}} }{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{e}^{−\mathrm{u}} \:\frac{\mathrm{du}}{\mathrm{n}+\mathrm{1}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\mathrm{4}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du}\:\:=\xi\left(\mathrm{4}\right).\Gamma\left(\mathrm{4}\right)\:=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}.\mathrm{3}! \\ $$$$=\frac{\mathrm{6}}{\mathrm{90}}.\pi^{\mathrm{4}} \:=\frac{\mathrm{2}.\mathrm{3}}{\mathrm{3}.\mathrm{30}}\pi^{\mathrm{4}} \:=\frac{\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$

Commented by mnjuly1970 last updated on 10/Feb/21

thank you sir max...

$${thank}\:{you}\:{sir}\:{max}... \\ $$

Commented by mathmax by abdo last updated on 10/Feb/21

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com