Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 131877 by Dwaipayan Shikari last updated on 09/Feb/21

Σ_(n=1) ^∞ (1/(n(e^(2πn) −1)))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({e}^{\mathrm{2}\pi{n}} −\mathrm{1}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 09/Feb/21

I have found   log((e^(2π) /(e^(2π) −1)).(e^(4π) /(e^(4π) −1)).(e^(6π) /(e^(6π) −1))...)=−log((1,e^(2π) )_∞ )  Π_(n=0) ^∞ (1−aq^n )=(a,q)_∞

$${I}\:{have}\:{found}\: \\ $$$${log}\left(\frac{{e}^{\mathrm{2}\pi} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{6}\pi} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}...\right)=−{log}\left(\left(\mathrm{1},{e}^{\mathrm{2}\pi} \right)_{\infty} \right) \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{aq}^{{n}} \right)=\left({a},{q}\right)_{\infty} \:\: \\ $$

Commented by SEKRET last updated on 09/Feb/21

I have found   log((e^(2π) /(e^(2π) −1)).(e^(4π) /(e^(4π) −1)).(e^(6π) /(e^(6π) −1))...)  e^(2𝛑) >e^(2𝛑) −1       +∞

$${I}\:{have}\:{found}\: \\ $$$${log}\left(\frac{{e}^{\mathrm{2}\pi} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{6}\pi} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}...\right) \\ $$$$\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\pi}} >\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\pi}} −\mathrm{1}\:\:\:\:\: \\ $$$$+\infty \\ $$

Commented by Dwaipayan Shikari last updated on 09/Feb/21

But not significantly (e^(2π) /(e^(2π) −1))=1.0018..  (e^(4π) /(e^(4π) −1))<1.0018  (e^(6π) /(e^(6π) −1))<(e^(4π) /(e^(4π) −1))<1.0018  So (e^(2π) /(e^(2π) −1)).(e^(4π) /(e^(4π) −1)).(e^(6π) /(e^(6π) −1))...=(1.0018)(1.0018−ε)(1.00018−2ε)...  So it converges   ε=+ve

$${But}\:{not}\:{significantly}\:\frac{{e}^{\mathrm{2}\pi} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}=\mathrm{1}.\mathrm{0018}.. \\ $$$$\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}<\mathrm{1}.\mathrm{0018} \\ $$$$\frac{{e}^{\mathrm{6}\pi} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}<\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}<\mathrm{1}.\mathrm{0018} \\ $$$${So}\:\frac{{e}^{\mathrm{2}\pi} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{6}\pi} }{{e}^{\mathrm{6}\pi} −\mathrm{1}}...=\left(\mathrm{1}.\mathrm{0018}\right)\left(\mathrm{1}.\mathrm{0018}−\epsilon\right)\left(\mathrm{1}.\mathrm{00018}−\mathrm{2}\epsilon\right)... \\ $$$${So}\:{it}\:{converges}\:\:\:\epsilon=+{ve} \\ $$

Commented by Dwaipayan Shikari last updated on 09/Feb/21

If we take reverse  log((e^(2π) /(e^(2π) −1)).(e^(4π) /(e^(4π) −1))..)=−log((1−(1/e^(2π) ))(1−(1/e^(4π) ))...)  Which converges..

$${If}\:{we}\:{take}\:{reverse} \\ $$$${log}\left(\frac{{e}^{\mathrm{2}\pi} }{{e}^{\mathrm{2}\pi} −\mathrm{1}}.\frac{{e}^{\mathrm{4}\pi} }{{e}^{\mathrm{4}\pi} −\mathrm{1}}..\right)=−{log}\left(\left(\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}\pi} }\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{4}\pi} }\right)...\right) \\ $$$${Which}\:{converges}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com