Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131879 by Study last updated on 09/Feb/21

prove that sin(nπ)=0   if    n∈Z

provethatsin(nπ)=0ifnZ

Answered by physicstutes last updated on 10/Feb/21

prove for n = 1  sin π = 0  assume for n= k , k ∈Z  ⇒ sin kπ = 0  prove for n = k+1  ⇒ sin (k+1)π = sin (kπ + π)    sin (kπ + π) = sin kπcos π + cos kπ sin π  but sin kπ = 0 from assumption and sin π = 0 from proved step  ⇒ sin (k+1)π = 0   hence ∀ n ∈ Z  sin (nπ) = 0

proveforn=1sinπ=0assumeforn=k,kZsinkπ=0proveforn=k+1sin(k+1)π=sin(kπ+π)sin(kπ+π)=sinkπcosπ+coskπsinπbutsinkπ=0fromassumptionandsinπ=0fromprovedstepsin(k+1)π=0hencenZsin(nπ)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com