Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131885 by Study last updated on 09/Feb/21

lim_(n→−∞) ((2^n +4^(n−3) )/(2^(n−3) +4n))=?

$${lim}_{{n}\rightarrow−\infty} \frac{\mathrm{2}^{{n}} +\mathrm{4}^{{n}−\mathrm{3}} }{\mathrm{2}^{{n}−\mathrm{3}} +\mathrm{4}{n}}=? \\ $$

Commented by malwan last updated on 09/Feb/21

lim_(n→−∞)  ((2^n +4^(n−3) )/(2^(n−3) +4^n )) = lim_(n→−∞) ((2^n +2^(2n−6) )/(2^(n−3) +2^(2n) ))  =lim_(n→−∞)  ((2^n (1+2^(n−6)  ))/(2^n (2^(−3) +2^n ))) =(1/2^(−3) )= 8

$$\underset{{n}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{2}^{{n}} +\mathrm{4}^{{n}−\mathrm{3}} }{\mathrm{2}^{{n}−\mathrm{3}} +\mathrm{4}^{{n}} }\:=\:\underset{{n}\rightarrow−\infty} {{lim}}\frac{\mathrm{2}^{{n}} +\mathrm{2}^{\mathrm{2}{n}−\mathrm{6}} }{\mathrm{2}^{{n}−\mathrm{3}} +\mathrm{2}^{\mathrm{2}{n}} } \\ $$$$=\underset{{n}\rightarrow−\infty} {{lim}}\:\frac{\mathrm{2}^{{n}} \left(\mathrm{1}+\mathrm{2}^{{n}−\mathrm{6}} \:\right)}{\mathrm{2}^{{n}} \left(\mathrm{2}^{−\mathrm{3}} +\mathrm{2}^{{n}} \right)}\:=\frac{\mathrm{1}}{\mathrm{2}^{−\mathrm{3}} }=\:\mathrm{8} \\ $$

Answered by EDWIN88 last updated on 10/Feb/21

if lim_(n→−∞) (((2^n +4^(n−3) )/(2^(n−3) +4^n )))=lim_(n→−∞) (((4^n [((2/4))^n +(1/(64)) ])/(4^n [1+(1/8)((2/4))^n )) )  = lim_(n→−∞) ((((1/2^n )+(1/(64)))/(1+(1/8).(1/2^n ))))=lim_(n→−∞) (((1+64.2^n )/(2^n +(1/8))))= 8  note that lim_(n→−∞) 2^n  = 0

$$\mathrm{if}\:\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{\mathrm{n}} +\mathrm{4}^{\mathrm{n}−\mathrm{3}} }{\mathrm{2}^{\mathrm{n}−\mathrm{3}} +\mathrm{4}^{\mathrm{n}} }\right)=\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\mathrm{4}^{\mathrm{n}} \left[\left(\frac{\mathrm{2}}{\mathrm{4}}\right)^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{64}}\:\right]}{\mathrm{4}^{\mathrm{n}} \left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{2}}{\mathrm{4}}\right)^{\mathrm{n}} \right.}\:\right) \\ $$$$=\:\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }+\frac{\mathrm{1}}{\mathrm{64}}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{8}}.\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }}\right)=\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}+\mathrm{64}.\mathrm{2}^{\mathrm{n}} }{\mathrm{2}^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{8}}}\right)=\:\mathrm{8} \\ $$$$\mathrm{note}\:\mathrm{that}\:\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}2}^{\mathrm{n}} \:=\:\mathrm{0}\: \\ $$

Answered by liberty last updated on 10/Feb/21

If lim_(n→−∞) (((2^n +4^(n−3) )/(2^(n−3) +4^n )))   let 2^n = x where x→0, as n→−∞  then lim_(x→0)  ((x+(1/(64))x^2 )/((1/8)x+x^2 )) = lim_(x→0)  ((64x+x^2 )/(8x+64x^2 ))   = lim_(x→0)  [ ((64+x)/(8+64x))] = ((64)/8)=8

$$\mathrm{If}\:\underset{\mathrm{n}\rightarrow−\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{\mathrm{n}} +\mathrm{4}^{\mathrm{n}−\mathrm{3}} }{\mathrm{2}^{\mathrm{n}−\mathrm{3}} +\mathrm{4}^{\mathrm{n}} }\right) \\ $$$$\:\mathrm{let}\:\mathrm{2}^{\mathrm{n}} =\:\mathrm{x}\:\mathrm{where}\:\mathrm{x}\rightarrow\mathrm{0},\:\mathrm{as}\:\mathrm{n}\rightarrow−\infty \\ $$$$\mathrm{then}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{64}}\mathrm{x}^{\mathrm{2}} }{\frac{\mathrm{1}}{\mathrm{8}}\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{64x}+\mathrm{x}^{\mathrm{2}} }{\mathrm{8x}+\mathrm{64x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{64}+\mathrm{x}}{\mathrm{8}+\mathrm{64x}}\right]\:=\:\frac{\mathrm{64}}{\mathrm{8}}=\mathrm{8} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com