All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 131957 by rs4089 last updated on 10/Feb/21
Evaluate∫−∞∞sinxx2+2x+2dx
Answered by Dwaipayan Shikari last updated on 10/Feb/21
∫−∞∞sinx(x+1)2+1x+1=u=∫−∞∞sinucos1−sin1cosuu2+1du=cos1∫−∞∞sinuu2+1−sin1∫−∞∞cosuu2+1du=0−πesin(1)=−πesin(1)
Commented by mnjuly1970 last updated on 10/Feb/21
verynicemrpayan...
Answered by mathmax by abdo last updated on 10/Feb/21
letf(λ)=∫−∞+∞sin(λx)x2+2x+2dxwithλ>0⇒f(λ)=Im(∫−∞+∞eiλxx2+2x+2dx)Φ(z)=eiλzz2+2z+2wehavez2+2z+2=0⇒(z+1)2+1=0⇒(z+1)2=−1⇒z+1=+−i⇒z=−1+−isithepolesofΦarez1=−1+iandz2=−1−i∫RΦ(z)dz=2iπRes(Φ,z1)=2iπ.eiλz12i=πeiλ(−1+i)=πe−iλ−λ=πe−λ{cos(λ)−isin(λ)}⇒f(λ)=−πe−λsin(λ)∫−∞+∞sinxx2+2x+2dx=f(1)=−πesin(1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com