Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131957 by rs4089 last updated on 10/Feb/21

Evaluate  ∫_(−∞) ^∞ ((sinx)/(x^2 +2x+2))dx

$${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{sinx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}{dx} \\ $$

Answered by Dwaipayan Shikari last updated on 10/Feb/21

∫_(−∞) ^∞ ((sinx)/((x+1)^2 +1))       x+1=u  =∫_(−∞) ^∞ ((sinu cos1−sin1cosu)/(u^2 +1))du  =cos1∫_(−∞) ^∞ ((sinu)/(u^2 +1))−sin1∫_(−∞) ^∞ ((cosu)/(u^2 +1))du  =0−(π/e)sin(1)=−(π/e)sin(1)

$$\int_{−\infty} ^{\infty} \frac{{sinx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:\:\:\:\:\:\:{x}+\mathrm{1}={u} \\ $$$$=\int_{−\infty} ^{\infty} \frac{{sinu}\:{cos}\mathrm{1}−{sin}\mathrm{1}{cosu}}{{u}^{\mathrm{2}} +\mathrm{1}}{du} \\ $$$$={cos}\mathrm{1}\int_{−\infty} ^{\infty} \frac{{sinu}}{{u}^{\mathrm{2}} +\mathrm{1}}−{sin}\mathrm{1}\int_{−\infty} ^{\infty} \frac{{cosu}}{{u}^{\mathrm{2}} +\mathrm{1}}{du} \\ $$$$=\mathrm{0}−\frac{\pi}{{e}}{sin}\left(\mathrm{1}\right)=−\frac{\pi}{{e}}{sin}\left(\mathrm{1}\right) \\ $$

Commented by mnjuly1970 last updated on 10/Feb/21

very nice mr payan...

$${very}\:{nice}\:{mr}\:{payan}... \\ $$

Answered by mathmax by abdo last updated on 10/Feb/21

let f(λ)=∫_(−∞) ^(+∞)  ((sin(λx))/(x^2  +2x+2))dx withλ>0 ⇒f(λ)=Im(∫_(−∞) ^(+∞)  (e^(iλx) /(x^2  +2x+2))dx)  Φ(z)=(e^(iλz) /(z^2  +2z+2))  we have z^2  +2z+2=0⇒(z+1)^2 +1=0 ⇒  (z+1)^2 =−1 ⇒z+1=+^− i ⇒z =−1+^− i si the poles of Φ are   z_1 =−1+i and z_2 =−1−i  ∫_R Φ(z)dz =2iπRes(Φ,z_1 )=2iπ .(e^(iλz_1 ) /(2i)) =π e^(iλ(−1+i))   =π e^(−iλ−λ)  =πe^(−λ) {cos(λ)−isin(λ)} ⇒f(λ)=−πe^(−λ)  sin(λ)  ∫_(−∞) ^(+∞)  ((sinx)/(x^2  +2x+2))dx =f(1)=−(π/e)sin(1)

$$\mathrm{let}\:\mathrm{f}\left(\lambda\right)=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{sin}\left(\lambda\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx}\:\mathrm{with}\lambda>\mathrm{0}\:\Rightarrow\mathrm{f}\left(\lambda\right)=\mathrm{Im}\left(\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{i}\lambda\mathrm{x}} }{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx}\right) \\ $$$$\Phi\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{i}\lambda\mathrm{z}} }{\mathrm{z}^{\mathrm{2}} \:+\mathrm{2z}+\mathrm{2}}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{z}^{\mathrm{2}} \:+\mathrm{2z}+\mathrm{2}=\mathrm{0}\Rightarrow\left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\:\Rightarrow \\ $$$$\left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{2}} =−\mathrm{1}\:\Rightarrow\mathrm{z}+\mathrm{1}=\overset{−} {+}\mathrm{i}\:\Rightarrow\mathrm{z}\:=−\mathrm{1}\overset{−} {+}\mathrm{i}\:\mathrm{si}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\Phi\:\mathrm{are}\: \\ $$$$\mathrm{z}_{\mathrm{1}} =−\mathrm{1}+\mathrm{i}\:\mathrm{and}\:\mathrm{z}_{\mathrm{2}} =−\mathrm{1}−\mathrm{i} \\ $$$$\int_{\mathrm{R}} \Phi\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\mathrm{Res}\left(\Phi,\mathrm{z}_{\mathrm{1}} \right)=\mathrm{2i}\pi\:.\frac{\mathrm{e}^{\mathrm{i}\lambda\mathrm{z}_{\mathrm{1}} } }{\mathrm{2i}}\:=\pi\:\mathrm{e}^{\mathrm{i}\lambda\left(−\mathrm{1}+\mathrm{i}\right)} \\ $$$$=\pi\:\mathrm{e}^{−\mathrm{i}\lambda−\lambda} \:=\pi\mathrm{e}^{−\lambda} \left\{\mathrm{cos}\left(\lambda\right)−\mathrm{isin}\left(\lambda\right)\right\}\:\Rightarrow\mathrm{f}\left(\lambda\right)=−\pi\mathrm{e}^{−\lambda} \:\mathrm{sin}\left(\lambda\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{\mathrm{sinx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx}\:=\mathrm{f}\left(\mathrm{1}\right)=−\frac{\pi}{\mathrm{e}}\mathrm{sin}\left(\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com