Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132000 by bramlexs22 last updated on 10/Feb/21

 super nice    ∫_0 ^∞ ((1/((x^3 +(1/x^3 ))^2 )) )dx

supernice0(1(x3+1x3)2)dx

Answered by EDWIN88 last updated on 10/Feb/21

E = ∫ (x^6 /((x^6 +1)^2 )) dx ; apply integration by parts    { ((u=x⇒du=dx)),((dv=(x^5 /((x^6 +1)^2 ))⇒v=−(1/6).(1/(x^6 +1)))) :}   E = −(x/(6(x^6 +1))) ]_0 ^∞ +(1/6)∫_0 ^∞  (dx/(x^6 +1))  E=0+(1/6)∫_0 ^∞ (dx/(x^6 +1)); replacing x by (1/x)  E=(1/6)∫_0 ^∞ (x^4 /(x^6 +1)) dx ; adding we get   2E=(1/6)∫_0 ^∞  ((x^4 +1)/(x^6 +1)) dx   E=(1/(12))∫_0 ^∞  ((x^2 +x^(−2) )/(x^3 +x^(−3) )) ((dx/x)) =(1/(12))∫_0 ^∞  ((x^2 +x^(−2) )/(x^3 +x^(−3) )) ((d(x−x^(−1) ))/(x+x^(−1) ))  E=(1/(12))∫_0 ^∞  ((x^2 +x^(−2) )/(x^2 −1+x^(−2) )) ((d(x−x^(−1) ))/((x+x^(−1) )^2 ))  letting r = x−x^(−1)   E=(1/(12))∫_(−∞) ^∞ ((r^2 +2)/((r^2 +1)(r^2 +4)))dr  E=(1/(36))∫^∞ _(−∞) ((1/(r^2 +1))+(2/(r^2 +4)))dr  E=(1/(36)) (arctan r + arctan ((r/2))]_(−∞) ^∞ =(π/(18))

E=x6(x6+1)2dx;applyintegrationbyparts{u=xdu=dxdv=x5(x6+1)2v=16.1x6+1E=x6(x6+1)]0+160dxx6+1E=0+160dxx6+1;replacingxby1xE=160x4x6+1dx;addingweget2E=160x4+1x6+1dxE=1120x2+x2x3+x3(dxx)=1120x2+x2x3+x3d(xx1)x+x1E=1120x2+x2x21+x2d(xx1)(x+x1)2lettingr=xx1E=112r2+2(r2+1)(r2+4)drE=136(1r2+1+2r2+4)drE=136(arctanr+arctan(r2)]=π18

Answered by Ar Brandon last updated on 10/Feb/21

I=∫_0 ^∞ (dx/((x^3 +(1/x^3 ))^2 ))=∫_0 ^∞ (x^6 /((x^6 +1)^2 ))dx  x^6 =u ⇒ 6x^5 dx=du ⇒ 6u^(5/6) dx=du  I=(1/6)∫_0 ^∞ (u^(1/6) /((u+1)^2 ))du=(1/6)β((7/6),(5/6))     =(1/6)∙(1/6)∙(π/(sin((π/6))))=(π/(18))

I=0dx(x3+1x3)2=0x6(x6+1)2dxx6=u6x5dx=du6u56dx=duI=160u16(u+1)2du=16β(76,56)=1616πsin(π6)=π18

Commented by bramlexs22 last updated on 10/Feb/21

with betha function

withbethafunction

Terms of Service

Privacy Policy

Contact: info@tinkutara.com