Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 13223 by Tinkutara last updated on 16/May/17

If a, b, c are sides of triangle show that  (1 + ((b−c)/a))^a (1 + ((c−a)/b))^b (1 + ((a−b)/c))^c  < 1

$$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{show}\:\mathrm{that} \\ $$ $$\left(\mathrm{1}\:+\:\frac{{b}−{c}}{{a}}\right)^{{a}} \left(\mathrm{1}\:+\:\frac{{c}−{a}}{{b}}\right)^{{b}} \left(\mathrm{1}\:+\:\frac{{a}−{b}}{{c}}\right)^{{c}} \:<\:\mathrm{1} \\ $$

Commented byb.e.h.i.8.3.4.1.7@gmail.com last updated on 17/May/17

if:  a=b=c⇒RHS=1≮LHS=1  1+((b−c)/a)=2×((p−c)/a),1+((c−a)/b)=2((p−a)/b),1+((a−b)/c)=2((p−b)/c)  (RHS)_1 =(1+((b−c)/a))(1+((c−a)/b))(1+((a−b)/c))⇒  (RHS)_1 =8×(((p−a)(p−b)(p−c))/(abc))=8×((S^2 /p)/(4RS))=  =((2S)/(pR))=((2r)/R)≤1  (according to Euler′s teorem)  d^2 =R^2 −2Rr=R(R−2r)≥0⇒R≥2r  abc=((2S)/(sinC)).2RsinC=4R.S,  S=p.r  (1+((b−c)/a))^a (1+((c−a)/b))^b (1+((a−b)/c))^c <  (1+((b−c)/a))^(abc) (1+((c−a)/b))^(abc) (1+((a−b)/c))^(abc) =  [(1+((b−c)/a))(1+((c−a)/b))(1+((a−b)/c))]^(abc) =  =(((2r)/R))^(abc) ≤1^(abc) ≤1     .■

$${if}:\:\:{a}={b}={c}\Rightarrow{RHS}=\mathrm{1}\nless{LHS}=\mathrm{1} \\ $$ $$\mathrm{1}+\frac{{b}−{c}}{{a}}=\mathrm{2}×\frac{{p}−{c}}{{a}},\mathrm{1}+\frac{{c}−{a}}{{b}}=\mathrm{2}\frac{{p}−{a}}{{b}},\mathrm{1}+\frac{{a}−{b}}{{c}}=\mathrm{2}\frac{{p}−{b}}{{c}} \\ $$ $$\left({RHS}\right)_{\mathrm{1}} =\left(\mathrm{1}+\frac{{b}−{c}}{{a}}\right)\left(\mathrm{1}+\frac{{c}−{a}}{{b}}\right)\left(\mathrm{1}+\frac{{a}−{b}}{{c}}\right)\Rightarrow \\ $$ $$\left({RHS}\right)_{\mathrm{1}} =\mathrm{8}×\frac{\left({p}−{a}\right)\left({p}−{b}\right)\left({p}−{c}\right)}{{abc}}=\mathrm{8}×\frac{\frac{{S}^{\mathrm{2}} }{{p}}}{\mathrm{4}{RS}}= \\ $$ $$=\frac{\mathrm{2}{S}}{{pR}}=\frac{\mathrm{2}{r}}{{R}}\leqslant\mathrm{1}\:\:\left({according}\:{to}\:{Euler}'{s}\:{teorem}\right) \\ $$ $${d}^{\mathrm{2}} ={R}^{\mathrm{2}} −\mathrm{2}{Rr}={R}\left({R}−\mathrm{2}{r}\right)\geqslant\mathrm{0}\Rightarrow{R}\geqslant\mathrm{2}{r} \\ $$ $${abc}=\frac{\mathrm{2}{S}}{{sinC}}.\mathrm{2}{RsinC}=\mathrm{4}{R}.{S},\:\:{S}={p}.{r} \\ $$ $$\left(\mathrm{1}+\frac{{b}−{c}}{{a}}\right)^{{a}} \left(\mathrm{1}+\frac{{c}−{a}}{{b}}\right)^{{b}} \left(\mathrm{1}+\frac{{a}−{b}}{{c}}\right)^{{c}} < \\ $$ $$\left(\mathrm{1}+\frac{{b}−{c}}{{a}}\right)^{{abc}} \left(\mathrm{1}+\frac{{c}−{a}}{{b}}\right)^{{abc}} \left(\mathrm{1}+\frac{{a}−{b}}{{c}}\right)^{{abc}} = \\ $$ $$\left[\left(\mathrm{1}+\frac{{b}−{c}}{{a}}\right)\left(\mathrm{1}+\frac{{c}−{a}}{{b}}\right)\left(\mathrm{1}+\frac{{a}−{b}}{{c}}\right)\right]^{{abc}} = \\ $$ $$=\left(\frac{\mathrm{2}{r}}{{R}}\right)^{{abc}} \leqslant\mathrm{1}^{{abc}} \leqslant\mathrm{1}\:\:\:\:\:.\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com