All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 132459 by mnjuly1970 last updated on 14/Feb/21
....nicecalculus....ϕ=∫0∞sin(x2)ln(x)x32dx=solution:ϕ=x2=t12∫0∞sin(t)ln(t)t34dtt12=14∫0∞sin(t)ln(t)t54dtψ(a)=∫0∞sin(t).tat54dt=∫0∞sin(t)t54−adtψ(a)=π2Γ(54−a)sin(5π8−π2a)∴ϕ=ψ′(0)4......ψ′(a)=π2[Γ′(54−a)sin(5π8−πa2)+π2Γ(54−a)cos(5π8−πa2)Γ2(54−a)sin2(5π8−πa2)]ψ′(0)=π2(Γ′(54)cos(π8)−π2Γ(54)sin(π8)Γ2(54)cos2(π8))=π2(4ψ(1+14)Γ(14)cos(π8)−2πΓ(14)sin(π8)Γ2(14)cos2(π8))ϕ=π4((2ψ(14)+8)Γ(14)cos(π8)−πΓ(14)sin(π8)Γ2(14)cos2(π8))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com