All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 132463 by EDWIN88 last updated on 14/Feb/21
Given∫abx2−3x∣x−3∣dx=112where{a<3<ba+2b=8 Find∫ab∣x∣dx.
Answered by bemath last updated on 14/Feb/21
Froma<3<bweget{a−3<0andb−3>0 theintegralbecomes∫a3−x(x−3)x−3dx+∫3bx(x−3)x−3dx=112 12[x2]3b−12[x2]a3=112 ⇔b2−9−(9−a2)=11 ⇒b2+a2=29∧a=8−2b ⇒b2+4b2−32b+64−29=0 ⇔5b2−32b+35=0 ⇔(5b−7)(b−5)=0→{b=75(rejected)b=5(accept) wegeta=−2.So∫−25∣x∣dx= ∫−20−xdx+∫05xdx=−12(−4)+12(25)=292
Terms of Service
Privacy Policy
Contact: info@tinkutara.com