Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132469 by Algoritm last updated on 14/Feb/21

Answered by Olaf last updated on 15/Feb/21

Let Ω_i  = ∫_0 ^1 (√(x_i (1−lnx_i )))dx_i   Let u_i  = 1−lnx_i   Ω_i  = ∫_(+∞) ^1 (√(e^(1−u_i ) u_i ))(−e^(1−u_i ) du_i )  Ω_i  = ∫_1 ^(+∞) e^((3/2)(1−u_i )) u_i ^(1/2) du_i   Ω_i  = e^(3/2) ∫_1 ^(+∞) e^(−(3/2)u_i ) u_i ^(1/2) du_i   Ω_i  = e^(3/2) [((√(6π))/9)(1−erf(((√6)/2))+(√(6/π))e^(−(3/2)) )]  Ω_i  ≈ 0∙84668...  Ω = ∫_0 ^1 ∫_0 ^1 ...∫_0 ^1 Π_(i=1) ^n (√(x_i (1−lnx_i )))dx_i   Ω = Π_(i=1) ^n ∫_0 ^1 (√(x_i (1−lnx_i )))dx_i   Ω = Π_(i=1) ^n Ω_i  = (0.84668...)^n

LetΩi=01xi(1lnxi)dxiLetui=1lnxiΩi=+1e1uiui(e1uidui)Ωi=1+e32(1ui)ui1/2duiΩi=e321+e32uiui1/2duiΩi=e32[6π9(1erf(62)+6πe32)]Ωi084668...Ω=0101...01ni=1xi(1lnxi)dxiΩ=ni=101xi(1lnxi)dxiΩ=ni=1Ωi=(0.84668...)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com