Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132497 by mathocean1 last updated on 14/Feb/21

a, b ∈ R.  Given a^3 +b^3 −ab+11=0  Show that −(7/3)<a+b<−2

a,bR. Givena3+b3ab+11=0 Showthat73<a+b<2

Answered by MJS_new last updated on 14/Feb/21

not true. i.e.:  a=−1∧b=−2 ⇒ a+b=−3

nottrue.i.e.: a=1b=2a+b=3

Answered by mr W last updated on 15/Feb/21

let s=a+b  s^3 −(3s+1)a(s−a)+11=0  (3s+1)a^2 −s(3s+1)a+s^3 +11=0  Δ=s^2 (3s+1)^2 −4(3s+1)(s^3 +11)≥0  (3s+1)(s^2 −s^3 −44)≥0  (3s+1)(s^3 −s^2 +44)≤0    3s+1=0  ⇒s=−(1/3)    s^3 −s^2 +44=0  let s=t+(1/3)  t^3 −(t/3)+((1186)/(27))=0  t=−((((593)/(27))+(√(((593^2 )/(27^2 ))−(1/9^3 )))))^(1/3) −((((593)/(27))−(√(((593^2 )/(27^2 ))−(1/9^3 )))))^(1/3)   s=(1/3)[1−((593+12(√(2442))))^(1/3) −((593−12(√(2442))))^(1/3) ]≈−3.2265    ⇒−3.2265≤s=a+b≤−(1/3)

lets=a+b s3(3s+1)a(sa)+11=0 (3s+1)a2s(3s+1)a+s3+11=0 Δ=s2(3s+1)24(3s+1)(s3+11)0 (3s+1)(s2s344)0 (3s+1)(s3s2+44)0 3s+1=0 s=13 s3s2+44=0 lets=t+13 t3t3+118627=0 t=59327+593227219335932759322721933 s=13[1593+12244235931224423]3.2265 3.2265s=a+b13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com