Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 132639 by Ahmed1hamouda last updated on 15/Feb/21

Commented by Ahmed1hamouda last updated on 15/Feb/21

solve the differential equation

solvethedifferentialequation

Answered by mathmax by abdo last updated on 15/Feb/21

h→y^((2))  +2y^((1))  +5y =0 →r^2  +2r+5=0  Δ^′ =1−5=−4 ⇒r_1 =−1+2i and r_2 =−1−2i ⇒  y_h =ae^((−1+2i)x) +b e^((−1−2i)x)  =e^(−x) {αcos(2x)+βsin(2x)}  =αu_1  +βu_2   W(u_1 ,u_2 )= determinant (((e^(−x) cos(2x)         e^(−x) sin(2x))),(((−cos(2x)−2sin(2x))e^(−x)           (−sin(2x)+2cos(2x))e^(−x) )))  =e^(−2x) {−cos(2x)sin(2x)+2cos^2 (2x)}−e^(−2x) {−cos(2x)sin(2x)−2sin^2 (2x)}  =2e^(−2x) ≠0  W_1 = determinant (((o           e^(−x) sin(2x))),((6e^(2x)  +xsin^2 x+e^x  cos(2x)        (−sin(2x)+2cos(2x))e^(−x) )))  =−e^(−x) sin(2x){6e^(2x)  +xsin^2 x +e^x  cos(2x)}  =6e^x  sin(2x)−xe^(−x) sin(2x)sin^2 x−sin(2x).cos(2x)  W_2 = determinant (((e^(−x) cos(2x)                             0)),(((−cos(2x)−2sin(2x))e^(−x)     6e^(2x)  +xsin^2 x +e^x  cos(2x))))  =6e^x  cos(2x)+xe^(−x) cos(2x)sin^2 x +cos^2 (2x)  V_1 =∫ (W_1 /W)dx =(1/2)∫ e^(2x) {6e^x  sin(2x)−xe^(−x) sin(2x)sin^2 x−(1/2)sin(4x)}dx  =3∫ e^(3x)  sin(2x)dx−(1/2)∫xe^x  sin(2x)sin^2 x dx−(1/4)∫e^(2x)  sin(4x)dx  ∫ e^(3x)  sin(2x)dx =Im(∫ e^(3x+2ix) dx)=....  ∫ e^(2x)  sin(4x)dx =Im(∫ e^(2x+4ix) dx)=...  ∫ xe^x  sin(2x)sin^2 (x)dx =∫ xe^x  sin(2x)((1−cos(2x))/2)dx  =(1/2)∫ xe^x  sin(2x)dx−(1/4)∫ xe^x  sin(4x)dx =  =(1/2)Im(∫ x e^(x+2ix) dx)−(1/4)Im(∫ xe^(x+4ix) dx)=...  V_2 =∫(W_2 /W)dx =(1/2)∫ e^(2x) {6e^x  cos(2x)+xe^(−x)  cos(2x)sin^2 x+cos^2 (2x)}  =....  ⇒y_p =u_1 v_1 +u_2 v_2  and general solution is  y =y_p  +y_h

hy(2)+2y(1)+5y=0r2+2r+5=0Δ=15=4r1=1+2iandr2=12iyh=ae(1+2i)x+be(12i)x=ex{αcos(2x)+βsin(2x)}=αu1+βu2W(u1,u2)=|excos(2x)exsin(2x)(cos(2x)2sin(2x))ex(sin(2x)+2cos(2x))ex|=e2x{cos(2x)sin(2x)+2cos2(2x)}e2x{cos(2x)sin(2x)2sin2(2x)}=2e2x0W1=|oexsin(2x)6e2x+xsin2x+excos(2x)(sin(2x)+2cos(2x))ex|=exsin(2x){6e2x+xsin2x+excos(2x)}=6exsin(2x)xexsin(2x)sin2xsin(2x).cos(2x)W2=|excos(2x)0(cos(2x)2sin(2x))ex6e2x+xsin2x+excos(2x)|=6excos(2x)+xexcos(2x)sin2x+cos2(2x)V1=W1Wdx=12e2x{6exsin(2x)xexsin(2x)sin2x12sin(4x)}dx=3e3xsin(2x)dx12xexsin(2x)sin2xdx14e2xsin(4x)dxe3xsin(2x)dx=Im(e3x+2ixdx)=....e2xsin(4x)dx=Im(e2x+4ixdx)=...xexsin(2x)sin2(x)dx=xexsin(2x)1cos(2x)2dx=12xexsin(2x)dx14xexsin(4x)dx==12Im(xex+2ixdx)14Im(xex+4ixdx)=...V2=W2Wdx=12e2x{6excos(2x)+xexcos(2x)sin2x+cos2(2x)}=....yp=u1v1+u2v2andgeneralsolutionisy=yp+yh

Terms of Service

Privacy Policy

Contact: info@tinkutara.com