Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132641 by aurpeyz last updated on 15/Feb/21

∫(1/(e^x +9e^(−x) ))dx

1ex+9exdx

Answered by MJS_new last updated on 15/Feb/21

t=e^x  → dx=(dt/t)  ∫(dt/(t^2 +9))=(1/3)arctan (t/3) =(1/3)arctan (e^x /3) +C

t=exdx=dttdtt2+9=13arctant3=13arctanex3+C

Answered by physicstutes last updated on 15/Feb/21

 I = ∫(1/(e^x +9e^(−x) )) dx = ∫((e^x dx)/(e^(2x) + 3^2 )) dx  let e^x  = u ⇒ du = e^x dx  ⇒ I = ∫(du/(u^2 +3^2 )) = (1/3)tan^(−1) ((u/3))+ A  I = (1/3) tan^(−1) ((e^x /3)) + A , A ∈ R

I=1ex+9exdx=exdxe2x+32dxletex=udu=exdxI=duu2+32=13tan1(u3)+AI=13tan1(ex3)+A,AR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com