Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132683 by otchereabdullai@gmail.com last updated on 15/Feb/21

A particle in a straight line with  uniform deceleration has a velocity of  40ms^(−1)  at point P , 20ms^(−1)  at point Q  and comes to rest at point R where   QR= 50m. calculate the  (i) Distance PQ  (ii)Time taken to cover PQ  (iii)Time taking to cover PR

Aparticleinastraightlinewithuniformdecelerationhasavelocityof40ms1atpointP,20ms1atpointQandcomestorestatpointRwhereQR=50m.calculatethe(i)DistancePQ(ii)TimetakentocoverPQ(iii)TimetakingtocoverPR

Answered by mr W last updated on 16/Feb/21

Method I  say uniform deceleration = a=constant  a=(dv/dt)=(dv/ds)×(ds/dt)=v(dv/ds)  vdv=ads  ∫vdv=a∫ds  ⇒(v^2 /2)+C=as  at P: s=0, v=40 ⇒((40^2 )/2)+C=0   ...(i)  at Q: s=x, v=20 ⇒((20^2 )/2)+C=ax   ...(ii)  at R: s=x+50, v=0 ⇒C=a(x+50)   ...(iii)  ⇒C=−800  ⇒ax=200−800=−600  ⇒a(x+50)=−800  ((x+50)/x)=((800)/(600))  ((x+50)/x)=(4/3) ⇒x=150  ⇒a=−((600)/(150))=−4 m/s^2     time for PQ=t_1 :  v_Q =v_P +at_1   t_1 =((20−40)/(−4))=5 s  time for QR=t_2 :  t_2 =((0−20)/(−4))=5 s

MethodIsayuniformdeceleration=a=constanta=dvdt=dvds×dsdt=vdvdsvdv=adsvdv=adsv22+C=asatP:s=0,v=404022+C=0...(i)atQ:s=x,v=202022+C=ax...(ii)atR:s=x+50,v=0C=a(x+50)...(iii)C=800ax=200800=600a(x+50)=800x+50x=800600x+50x=43x=150a=600150=4m/s2timeforPQ=t1:vQ=vP+at1t1=20404=5stimeforQR=t2:t2=0204=5s

Commented by mr W last updated on 15/Feb/21

Commented by otchereabdullai@gmail.com last updated on 15/Feb/21

Prof W  thank you soooooo much!

ProfWthankyousoooooomuch!

Answered by mr W last updated on 16/Feb/21

Method II    let the particle move backwards from  R to Q to P. it moves then with an  uniform acceleration a.  s_1 =RQ=50  v_Q ^2 −v_R ^2 =2as_1   ⇒a=((20^2 −0)/(2×50))=4 m/s^2   time from R to Q=t_1   v_Q =v_R +at_1   ⇒t_1 =((20−0)/4)=5 s  s_2 =QP=x  v_P ^2 −v_Q ^2 =2ax  ⇒x=((40^2 −20^2 )/(2×4))=150 m  time from Q to P=t_2   ⇒t_2 =((40−20)/4)=5 s

MethodIIlettheparticlemovebackwardsfromRtoQtoP.itmovesthenwithanuniformaccelerationa.s1=RQ=50vQ2vR2=2as1a=20202×50=4m/s2timefromRtoQ=t1vQ=vR+at1t1=2004=5ss2=QP=xvP2vQ2=2axx=4022022×4=150mtimefromQtoP=t2t2=40204=5s

Commented by otchereabdullai@gmail.com last updated on 16/Feb/21

God bless you prof W

GodblessyouprofW

Terms of Service

Privacy Policy

Contact: info@tinkutara.com