All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 132693 by liberty last updated on 15/Feb/21
I=∫dxx(x2+1)3
Answered by EDWIN88 last updated on 15/Feb/21
Ostrogradskyagain∫dxx(x2+1)3=ax3+bx2+cx+d(x2+1)2+∫ex2+fx+gx(x2+1)dxaftersolvingforcoefficienta=0,b=12,c=0,d=34,e=0,f=0andg=1∫dxx(x2+1)3=2x2+34(x2+1)2+∫1x(x2+1)dx=2x2+34(x2+1)2+∫(1x−xx2+1)dx=2x2+34(x2+1)2+ln∣x∣−12ln(x2+1)+CIchmagdiesesintegral.schoner¨ostrogradsky
Answered by mathmax by abdo last updated on 16/Feb/21
I=∫dxx(x2+1)3⇒I=∫dxx(x−i)2(x+i)2=∫dxx(x−ix+i)2(x+i)4wedothechangementx−ix+i=t⇒x−i=tx+it⇒(1−t)x=i(1+t)⇒x=i(1+t)1−t⇒dxdt=i(1−t)−(1+t)(−1)(1−t)2=2i(1−t)2x+i=i(1+t1−t+1)=i(21−t)=2i1−t⇒I=∫1i1+t1−t.t2(2i)4(1−t)4×2i(1−t)2=2(2i)4∫(1−t)5(1+t)t2(1−t)2dt=18∫(1−t)3t2(1+t)dt=18∫1−3t+3t2−t3t2(t+1)dt=>8I=∫dtt2(t+1)−∫dtt(t+1)+3∫dtt+1−∫tt+1dtandthoseintegralsaresimplestocalculate....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com