Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132693 by liberty last updated on 15/Feb/21

I=∫ (dx/(x(x^2 +1)^3 ))

I=dxx(x2+1)3

Answered by EDWIN88 last updated on 15/Feb/21

Ostrogradsky again  ∫ (dx/(x(x^2 +1)^3 )) = ((ax^3 +bx^2 +cx+d)/((x^2 +1)^2 ))+∫ ((ex^2 +fx+g)/(x(x^2 +1))) dx  after solving for coefficient  a=0 ,b=(1/2), c=0 , d=(3/4),e=0 ,f=0 and g=1  ∫ (dx/(x(x^2 +1)^3 )) = ((2x^2 +3)/(4(x^2 +1)^2 )) +∫ (1/(x(x^2 +1)))dx         = ((2x^2 +3)/(4(x^2 +1)^2 ))+∫ ((1/x)−(x/(x^2 +1)))dx      = ((2x^2 +3)/(4(x^2 +1)^2 ))+ln ∣x∣−(1/2)ln (x^2 +1) + C     Ich mag dieses integral. scho^  ner ostrogradsky

Ostrogradskyagaindxx(x2+1)3=ax3+bx2+cx+d(x2+1)2+ex2+fx+gx(x2+1)dxaftersolvingforcoefficienta=0,b=12,c=0,d=34,e=0,f=0andg=1dxx(x2+1)3=2x2+34(x2+1)2+1x(x2+1)dx=2x2+34(x2+1)2+(1xxx2+1)dx=2x2+34(x2+1)2+lnx12ln(x2+1)+CIchmagdiesesintegral.schoner¨ostrogradsky

Answered by mathmax by abdo last updated on 16/Feb/21

I =∫ (dx/(x(x^2 +1)^3 )) ⇒I =∫ (dx/(x(x−i)^2 (x+i)^2 )) =∫  (dx/(x(((x−i)/(x+i)))^2 (x+i)^4 ))  we do the changement ((x−i)/(x+i))=t ⇒x−i=tx+it ⇒(1−t)x=i(1+t) ⇒  x=((i(1+t))/(1−t)) ⇒(dx/dt)=i(((1−t)−(1+t)(−1))/((1−t)^2 ))=((2i)/((1−t)^2 ))  x+i =i(((1+t)/(1−t))+1) =i((2/(1−t)))=((2i)/(1−t)) ⇒  I =∫   (1/(i((1+t)/(1−t)).t^2 (((2i)^4 )/((1−t)^4 ))))×((2i)/((1−t)^2 )) =(2/((2i)^4 ))∫  (((1−t)^5 )/((1+t)t^2 (1−t)^2 ))dt  =(1/8)∫  (((1−t)^3 )/(t^2 (1+t)))dt =(1/8)∫  ((1−3t+3t^2 −t^3 )/(t^2 (t+1)))dt  =>8I =∫  (dt/(t^2 (t+1)))−∫ (dt/(t(t+1)))+3∫ (dt/(t+1))−∫ (t/(t+1))dt  and those integrals are simples to calculate....

I=dxx(x2+1)3I=dxx(xi)2(x+i)2=dxx(xix+i)2(x+i)4wedothechangementxix+i=txi=tx+it(1t)x=i(1+t)x=i(1+t)1tdxdt=i(1t)(1+t)(1)(1t)2=2i(1t)2x+i=i(1+t1t+1)=i(21t)=2i1tI=1i1+t1t.t2(2i)4(1t)4×2i(1t)2=2(2i)4(1t)5(1+t)t2(1t)2dt=18(1t)3t2(1+t)dt=1813t+3t2t3t2(t+1)dt=>8I=dtt2(t+1)dtt(t+1)+3dtt+1tt+1dtandthoseintegralsaresimplestocalculate....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com