All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 133036 by liberty last updated on 18/Feb/21
∫0π2dx1+tan2014(x)=πeqpFind2p−q.
Answered by liberty last updated on 18/Feb/21
I=∫0π2dx1+tan2014(x)=∫π20tan2014(x)1+tan2014(x)(−dx)I=∫0π2tan2014(x)1+tan2014(x)dxweget2I=∫0π21+tan2014(x)1+tan2014(x)dxI=12.π2=π4=πeqp→{q=0p=4⇒2p−q=8
Answered by mathmax by abdo last updated on 20/Feb/21
I=∫0π2dx1+tan2014x⇒I=tanx=z∫0∞dz(1+z2)(1+z2014)I=z=1t−∫0∞−dtt2(1+1t2)(1+1t2014)=∫0∞t2014(1+t2)(1+t2014)⇒2I=∫0∞(1(1+z2)(1+z2014)+z2014(1+z2)(1+z2014))dz=∫0∞dz1+z2=π2⇒I=π4=πpeq⇒p=4andq=0⇒2p−q=8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com