Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133036 by liberty last updated on 18/Feb/21

∫^( (π/2)) _0  (dx/(1+tan^(2014) (x))) = ((πe^q )/p)  Find 2p−q.

0π2dx1+tan2014(x)=πeqpFind2pq.

Answered by liberty last updated on 18/Feb/21

I=∫^( (π/2)) _0  (dx/(1+tan^(2014) (x)))=∫^0 _(π/2)  ((tan^(2014) (x))/(1+tan^(2014) (x))) (−dx)  I=∫^(π/2) _0  ((tan^(2014) (x))/(1+tan^(2014) (x))) dx   we get 2I = ∫^( (π/2)) _0 ((1+tan^(2014) (x))/(1+tan^(2014) (x)))dx  I=(1/2). (π/2) = (π/4) = ((πe^q )/p)  → { ((q=0)),((p=4)) :} ⇒2p−q = 8

I=0π2dx1+tan2014(x)=π20tan2014(x)1+tan2014(x)(dx)I=0π2tan2014(x)1+tan2014(x)dxweget2I=0π21+tan2014(x)1+tan2014(x)dxI=12.π2=π4=πeqp{q=0p=42pq=8

Answered by mathmax by abdo last updated on 20/Feb/21

I=∫_0 ^(π/2)  (dx/(1+tan^(2014) x)) ⇒I=_(tanx=z)   ∫_0 ^∞    (dz/((1+z^2 )(1+z^(2014) )))  I=_(z=(1/t))    −∫_0 ^∞    ((−dt)/(t^2 (1+(1/t^2 ))(1+(1/t^(2014) )))) =∫_0 ^∞ (t^(2014) /((1+t^2 )(1+t^(2014) ))) ⇒  2I =∫_0 ^∞   ((1/((1+z^2 )(1+z^(2014) )))+(z^(2014) /((1+z^2 )(1+z^(2014) ))))dz =∫_0 ^∞  (dz/(1+z^2 ))  =(π/2) ⇒I =(π/4) =(π/p)e^q  ⇒p=4 and q=0 ⇒2p−q=8

I=0π2dx1+tan2014xI=tanx=z0dz(1+z2)(1+z2014)I=z=1t0dtt2(1+1t2)(1+1t2014)=0t2014(1+t2)(1+t2014)2I=0(1(1+z2)(1+z2014)+z2014(1+z2)(1+z2014))dz=0dz1+z2=π2I=π4=πpeqp=4andq=02pq=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com