Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133050 by mnjuly1970 last updated on 18/Feb/21

           ...nice ......calculus...       𝛗= ∫_(0 ) ^( 1) xli_3 (x)dx=???

$$\:\:\:\:\:\:\:\:\:\:\:...{nice}\:......{calculus}... \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {xli}_{\mathrm{3}} \left({x}\right){dx}=??? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 18/Feb/21

∫_0 ^1 xli_3 (x)dx=∫_0 ^1 xΞ£_(n=1) ^∞ (x^n /n^3 )=Ξ£_(n=1) ^∞ (1/(n^3 (n+2)))  =(1/2)Ξ£_(n=1) ^∞ (1/n^3 )βˆ’(1/2)Ξ£_(n=1) ^∞ (1/(n^2 (n+2)))=((ΞΆ(3))/2)βˆ’(1/4)Ξ£_(n=1) ^∞ (1/n^2 )+(1/4)Ξ£_(n=1) ^∞ (1/(n(n+2)))  =((ΞΆ(3))/2)βˆ’(Ο€^2 /(24))+(1/8)(1+(1/2))=((ΞΆ(3))/2)βˆ’(Ο€^2 /(24))+(3/(16))=(1/(48))(24ΞΆ(3)βˆ’2Ο€^2 +9)

$$\int_{\mathrm{0}} ^{\mathrm{1}} {xli}_{\mathrm{3}} \left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}^{\mathrm{3}} }=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} \left({n}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }βˆ’\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{2}\right)}=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}}βˆ’\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)} \\ $$$$=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}}βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}}βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{3}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{48}}\left(\mathrm{24}\zeta\left(\mathrm{3}\right)βˆ’\mathrm{2}\pi^{\mathrm{2}} +\mathrm{9}\right) \\ $$

Commented by mnjuly1970 last updated on 18/Feb/21

thank you for your effort..  grateful...

$${thank}\:{you}\:{for}\:{your}\:{effort}.. \\ $$$${grateful}... \\ $$

Answered by mnjuly1970 last updated on 18/Feb/21

    𝛗=[(x^2 /2)li_3 (x)]_0 ^1 βˆ’(1/2)∫_0 ^( 1) xli_2 (x)dx          =(1/2)li_3 (1)βˆ’(Ξ¦/2)      where  Ξ¦=∫_0 ^( 1) xli_2 (x)dx                    =[(x^2 /2)li_2 (x)]_0 ^1 βˆ’(1/2)∫_0 ^( 1) xli_1 (x)dx        =(Ο€^2 /(12))βˆ’(Ξ¨/2)      Ξ¨=∫_0 ^( 1) xli_1 (x)dx=Ξ£_(n=1) ^∞ ∫_0 ^( 1) (x^(n+1) /n)dx        =Ξ£_(n=1) ^∞ (1/(n(n+2)))=(1/2)(Ξ£_(n=1) ^∞ (1/n)βˆ’(1/(n+2)))       =(1/2)((1/1)βˆ’(1/3)+(1/2)βˆ’(1/4)+(1/3)βˆ’(1/5)+(1/4)βˆ’(1/6)+....)       =(3/4)     ∴   𝛗 =((ΞΆ(3))/2) βˆ’(1/2)((Ο€^2 /(12))βˆ’(1/2)((3/4)))           =((ΞΆ(3))/2)βˆ’(Ο€^2 /(24))+(3/(16)) ....

$$\:\:\:\:\boldsymbol{\phi}=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{li}_{\mathrm{3}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {xli}_{\mathrm{2}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}{li}_{\mathrm{3}} \left(\mathrm{1}\right)βˆ’\frac{\Phi}{\mathrm{2}} \\ $$$$\:\:\:\:{where}\:\:\Phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xli}_{\mathrm{2}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{li}_{\mathrm{2}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {xli}_{\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\:\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}βˆ’\frac{\Psi}{\mathrm{2}} \\ $$$$\:\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xli}_{\mathrm{1}} \left({x}\right){dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{{n}}{dx} \\ $$$$\:\:\:\:\:\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}βˆ’\frac{\mathrm{1}}{{n}+\mathrm{2}}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{1}}βˆ’\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}βˆ’\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{3}}βˆ’\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{4}}βˆ’\frac{\mathrm{1}}{\mathrm{6}}+....\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\therefore\:\:\:\boldsymbol{\phi}\:=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}}\:βˆ’\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{12}}βˆ’\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}}βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\mathrm{3}}{\mathrm{16}}\:.... \\ $$

Commented by Dwaipayan Shikari last updated on 18/Feb/21

There was a mistake on my answer . I have edited

$${There}\:{was}\:{a}\:{mistake}\:{on}\:{my}\:{answer}\:.\:{I}\:{have}\:{edited} \\ $$

Commented by mnjuly1970 last updated on 18/Feb/21

  grateful sir payan...

$$\:\:{grateful}\:{sir}\:{payan}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com