Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133191 by pticantor last updated on 19/Feb/21

g(x,y)=x^4 +y^4 −2(x−y)^2   find criticals points of g(x,y)  and hers nature

$$\boldsymbol{{g}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)=\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{y}}^{\mathrm{4}} −\mathrm{2}\left(\boldsymbol{{x}}−\boldsymbol{{y}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{criticals}}\:\boldsymbol{{points}}\:\boldsymbol{{of}}\:\boldsymbol{{g}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right) \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{hers}}\:\boldsymbol{{nature}} \\ $$

Answered by Olaf last updated on 20/Feb/21

g(x,y) = x^4 +y^4 −2(x−y)^2   ▽g =  [((∂g/∂x)),((∂g/∂y)) ] =  [((4x^3 −2(x−y))),((4y^3 +2(x−y))) ]  ▽g =  [(0),(0) ]⇔ (x−y) = 2x^3  = −2y^3   ⇔ (x,y) = (0,0) : this is the only  critical point.    Hessian matrix :   [((∂^2 g/∂x^2 ),(∂^2 g/(∂x∂y))),((∂^2 g/(∂y∂x)),(∂^2 g/∂y^2 )) ] =  [((12x^2 −2x),2),(2,(12y^2 −2y)) ]  Hessian matrix in (0,0) :  Hess(g)∣_((0,0))  =  [(0,2),(2,0) ]  det(Hess(g)∣_((0,0)) ) =  determinant ((0,2),(2,0))= −4  det(Hess(g)∣_((0,0)) ) < 0  ⇒ (0,0) is a saddle point

$${g}\left({x},{y}\right)\:=\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} −\mathrm{2}\left({x}−{y}\right)^{\mathrm{2}} \\ $$$$\bigtriangledown{g}\:=\:\begin{bmatrix}{\frac{\partial{g}}{\partial{x}}}\\{\frac{\partial{g}}{\partial{y}}}\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{4}{x}^{\mathrm{3}} −\mathrm{2}\left({x}−{y}\right)}\\{\mathrm{4}{y}^{\mathrm{3}} +\mathrm{2}\left({x}−{y}\right)}\end{bmatrix} \\ $$$$\bigtriangledown{g}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix}\Leftrightarrow\:\left({x}−{y}\right)\:=\:\mathrm{2}{x}^{\mathrm{3}} \:=\:−\mathrm{2}{y}^{\mathrm{3}} \\ $$$$\Leftrightarrow\:\left({x},{y}\right)\:=\:\left(\mathrm{0},\mathrm{0}\right)\::\:\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{only} \\ $$$$\mathrm{critical}\:\mathrm{point}. \\ $$$$ \\ $$$$\mathrm{Hessian}\:\mathrm{matrix}\:: \\ $$$$\begin{bmatrix}{\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }}&{\frac{\partial^{\mathrm{2}} {g}}{\partial{x}\partial{y}}}\\{\frac{\partial^{\mathrm{2}} {g}}{\partial{y}\partial{x}}}&{\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }}\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{12}{x}^{\mathrm{2}} −\mathrm{2}{x}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{12}{y}^{\mathrm{2}} −\mathrm{2}{y}}\end{bmatrix} \\ $$$$\mathrm{Hessian}\:\mathrm{matrix}\:\mathrm{in}\:\left(\mathrm{0},\mathrm{0}\right)\:: \\ $$$$\mathrm{Hess}\left({g}\right)\mid_{\left(\mathrm{0},\mathrm{0}\right)} \:=\:\begin{bmatrix}{\mathrm{0}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{det}\left(\mathrm{Hess}\left({g}\right)\mid_{\left(\mathrm{0},\mathrm{0}\right)} \right)\:=\:\begin{vmatrix}{\mathrm{0}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{0}}\end{vmatrix}=\:−\mathrm{4} \\ $$$$\mathrm{det}\left(\mathrm{Hess}\left({g}\right)\mid_{\left(\mathrm{0},\mathrm{0}\right)} \right)\:<\:\mathrm{0} \\ $$$$\Rightarrow\:\left(\mathrm{0},\mathrm{0}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{saddle}\:\mathrm{point} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com