Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133228 by mnjuly1970 last updated on 20/Feb/21

                   ....advanced    calculus....     prove  that ::         Σ_(n=0) ^∞ ((Γ(n+(1/2))ψ(n+(1/2)))/(2^n .n!))=−(√(2π)) (γ+ln(2))....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{advanced}\:\:\:\:{calculus}.... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\psi\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} .{n}!}=−\sqrt{\mathrm{2}\pi}\:\left(\gamma+{ln}\left(\mathrm{2}\right)\right).... \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 20/Feb/21

Σ_(n=0) ^∞ ((Γ′(n+(1/2)))/(2^n n!))=Σ_(n=0) ^∞ (1/(2^n n!))∫_0 ^∞ x^(n−(1/2)) e^(−x) log(x)  =∫_0 ^∞ Σ_(n=0) ^∞ ((((x/2))^n )/(n!))x^(−(1/2)) e^(−x) log(x)  =∫_0 ^∞ e^(x/2) x^(−(1/2)) e^(−x) log(x)dx =∫_0 ^∞ x^(−(1/2)) e^(−(x/2)) log(x)dx        =(√2)∫_0 ^∞ u^(−(1/2)) e^(−u) log(2u)=(√(2π)) log(2)+(√2)Γ′((1/2))  =(√(2π)) log(2)+(√(2π)) (−γ−2log(2))  =−(√(2π)) (γ+log(2))

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma'\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} {n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} {n}!}\int_{\mathrm{0}} ^{\infty} {x}^{{n}−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {log}\left({x}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{{x}}{\mathrm{2}}\right)^{{n}} }{{n}!}{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {log}\left({x}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{\frac{{x}}{\mathrm{2}}} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {log}\left({x}\right){dx}\:=\int_{\mathrm{0}} ^{\infty} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−\frac{{x}}{\mathrm{2}}} {log}\left({x}\right){dx}\:\:\:\:\:\: \\ $$$$=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {u}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{u}} {log}\left(\mathrm{2}{u}\right)=\sqrt{\mathrm{2}\pi}\:{log}\left(\mathrm{2}\right)+\sqrt{\mathrm{2}}\Gamma'\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\sqrt{\mathrm{2}\pi}\:{log}\left(\mathrm{2}\right)+\sqrt{\mathrm{2}\pi}\:\left(−\gamma−\mathrm{2}{log}\left(\mathrm{2}\right)\right) \\ $$$$=−\sqrt{\mathrm{2}\pi}\:\left(\gamma+{log}\left(\mathrm{2}\right)\right) \\ $$

Commented by mnjuly1970 last updated on 20/Feb/21

very nice   thank you mr payan...

$${very}\:{nice}\: \\ $$$${thank}\:{you}\:{mr}\:{payan}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com