Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 133264 by Dwaipayan Shikari last updated on 20/Feb/21

Σ_(n=1) ^∞ ((sinn)/n^3 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sinn}}{{n}^{\mathrm{3}} } \\ $$

Commented by Dwaipayan Shikari last updated on 20/Feb/21

I have found (1/(12))−(π/4)+((π^2  )/6)

$${I}\:{have}\:{found}\:\frac{\mathrm{1}}{\mathrm{12}}−\frac{\pi}{\mathrm{4}}+\frac{\pi^{\mathrm{2}} \:}{\mathrm{6}} \\ $$

Answered by mnjuly1970 last updated on 20/Feb/21

 properties of trilogarithm..    li_3 (z)−li_3 ((1/z))=−(1/6)ln^3 (−z)−(1/6)π^2 ln(−z)    (1/(2i))(Σ_(n=1) ^∞ (e^(in) /n^3 )−(e^(−in) /n^3 ))=(1/(2i))(li_3 (e^i )−li_3 ((1/e^i )))  =(i/(12))(ln^3 (−e^i )+π^2 ln(−e^i ))  =(i/(12))ln(i^2 e^i )((ln(i^2 )+ln(e^i ))^2 +π^2 )  =(i/(12))(2ln(i)+i)[(2ln(i)+i)^2 +π^2 ]  =(i/(12))(i)(π+1)[−(π+1)^2 +π^2 ]  =−((π+1)/(12))(−2π−1)  =(π^2 /6)+(π/4)+(1/(12)) =....

$$\:{properties}\:{of}\:{trilogarithm}.. \\ $$$$\:\:{li}_{\mathrm{3}} \left({z}\right)−{li}_{\mathrm{3}} \left(\frac{\mathrm{1}}{{z}}\right)=−\frac{\mathrm{1}}{\mathrm{6}}{ln}^{\mathrm{3}} \left(−{z}\right)−\frac{\mathrm{1}}{\mathrm{6}}\pi^{\mathrm{2}} {ln}\left(−{z}\right) \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{in}} }{{n}^{\mathrm{3}} }−\frac{{e}^{−{in}} }{{n}^{\mathrm{3}} }\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left({li}_{\mathrm{3}} \left({e}^{{i}} \right)−{li}_{\mathrm{3}} \left(\frac{\mathrm{1}}{{e}^{{i}} }\right)\right) \\ $$$$=\frac{{i}}{\mathrm{12}}\left({ln}^{\mathrm{3}} \left(−{e}^{{i}} \right)+\pi^{\mathrm{2}} {ln}\left(−{e}^{{i}} \right)\right) \\ $$$$=\frac{{i}}{\mathrm{12}}{ln}\left({i}^{\mathrm{2}} {e}^{{i}} \right)\left(\left({ln}\left({i}^{\mathrm{2}} \right)+{ln}\left({e}^{{i}} \right)\right)^{\mathrm{2}} +\pi^{\mathrm{2}} \right) \\ $$$$=\frac{{i}}{\mathrm{12}}\left(\mathrm{2}{ln}\left({i}\right)+{i}\right)\left[\left(\mathrm{2}{ln}\left({i}\right)+{i}\right)^{\mathrm{2}} +\pi^{\mathrm{2}} \right] \\ $$$$=\frac{{i}}{\mathrm{12}}\left({i}\right)\left(\pi+\mathrm{1}\right)\left[−\left(\pi+\mathrm{1}\right)^{\mathrm{2}} +\pi^{\mathrm{2}} \right] \\ $$$$=−\frac{\pi+\mathrm{1}}{\mathrm{12}}\left(−\mathrm{2}\pi−\mathrm{1}\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}\:=.... \\ $$

Commented by Dwaipayan Shikari last updated on 20/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com