Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 133321 by 777316 last updated on 21/Feb/21

Find x :  sin(3x)−sin(2x)−2sin(x) = (√3)cos(x)

$${Find}\:{x}\:: \\ $$$${sin}\left(\mathrm{3}{x}\right)−{sin}\left(\mathrm{2}{x}\right)−\mathrm{2}{sin}\left({x}\right)\:=\:\sqrt{\mathrm{3}}{cos}\left({x}\right) \\ $$

Commented by bramlexs22 last updated on 21/Feb/21

x=((2π)/3)  sin (3×((2π)/3))−sin (2×((2π)/3))−2sin (((2π)/3))=  sin (2π)−sin (((4π)/3))−2sin (((2π)/3))=  0+ ((√3)/2)−2(((√3)/2))=−((√3)/2) ⇐ LHS  RHS ⇒(√3) cos (((2π)/3))=(√3) (−(1/2))=−((√3)/2)

$$\mathrm{x}=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\mathrm{sin}\:\left(\mathrm{3}×\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−\mathrm{sin}\:\left(\mathrm{2}×\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−\mathrm{2sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)= \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\pi\right)−\mathrm{sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{3}}\right)−\mathrm{2sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)= \\ $$$$\mathrm{0}+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Leftarrow\:\mathrm{LHS} \\ $$$$\mathrm{RHS}\:\Rightarrow\sqrt{\mathrm{3}}\:\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)=\sqrt{\mathrm{3}}\:\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Answered by bramlexs22 last updated on 21/Feb/21

x=((2π)/3), ((8π)/3),((14π)/3),...

$$\mathrm{x}=\frac{\mathrm{2}\pi}{\mathrm{3}},\:\frac{\mathrm{8}\pi}{\mathrm{3}},\frac{\mathrm{14}\pi}{\mathrm{3}},...\: \\ $$

Commented by 777316 last updated on 21/Feb/21

how

Commented by bramlexs22 last updated on 21/Feb/21

Answered by MJS_new last updated on 21/Feb/21

sin 3x −sin 2x −sin x =(√3)cos x  ...  ±(4cos^2  x −2cos x −3)(√(1−cos^2  x)) =(√3)cos x  let c=cos x  squaring and transforming  c^6 −c^5 −(9/4)c^4 +(7/4)c^3 +2c^2 −(3/4)c−(9/(16))=0  (c+(1/2))(c^5 −(3/2)c^4 −(3/2)c^3 +(5/2)c^2 +(3/4)c−(9/8))=0  the 5^(th)  degree polynome has one real solution we  can only approximate  c_1 =−(1/2)=cos x_1   c_2 ≈.777106906075 =cos x_2   testing the solutions (because we have squared)  leads to  ⇒  x_1 =((2π)/3)+2nπ  x_2 ≈−.680740465517+2nπ

$$\mathrm{sin}\:\mathrm{3}{x}\:−\mathrm{sin}\:\mathrm{2}{x}\:−\mathrm{sin}\:{x}\:=\sqrt{\mathrm{3}}\mathrm{cos}\:{x} \\ $$$$... \\ $$$$\pm\left(\mathrm{4cos}^{\mathrm{2}} \:{x}\:−\mathrm{2cos}\:{x}\:−\mathrm{3}\right)\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{x}}\:=\sqrt{\mathrm{3}}\mathrm{cos}\:{x} \\ $$$$\mathrm{let}\:{c}=\mathrm{cos}\:{x} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$${c}^{\mathrm{6}} −{c}^{\mathrm{5}} −\frac{\mathrm{9}}{\mathrm{4}}{c}^{\mathrm{4}} +\frac{\mathrm{7}}{\mathrm{4}}{c}^{\mathrm{3}} +\mathrm{2}{c}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{4}}{c}−\frac{\mathrm{9}}{\mathrm{16}}=\mathrm{0} \\ $$$$\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({c}^{\mathrm{5}} −\frac{\mathrm{3}}{\mathrm{2}}{c}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{2}}{c}^{\mathrm{3}} +\frac{\mathrm{5}}{\mathrm{2}}{c}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}{c}−\frac{\mathrm{9}}{\mathrm{8}}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{polynome}\:\mathrm{has}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$${c}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{cos}\:{x}_{\mathrm{1}} \\ $$$${c}_{\mathrm{2}} \approx.\mathrm{777106906075}\:=\mathrm{cos}\:{x}_{\mathrm{2}} \\ $$$$\mathrm{testing}\:\mathrm{the}\:\mathrm{solutions}\:\left(\mathrm{because}\:\mathrm{we}\:\mathrm{have}\:\mathrm{squared}\right) \\ $$$$\mathrm{leads}\:\mathrm{to} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}{n}\pi \\ $$$${x}_{\mathrm{2}} \approx−.\mathrm{680740465517}+\mathrm{2}{n}\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com