Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 13333 by mrW1 last updated on 19/May/17

About the solution to question:  For a,b,c>0 and abc=1, prove  a^(b+c) b^(c+a) c^(a+b) ≤1    Way 1:  Let′s say a≤b≤c.  We can prove that a≤1:  If a>1, we will get b≥a>1, c≥b>1,  ⇒abc>1  but abc=1!   so a>1 is not true, i.e. a≤1.  Similarly we can also prove that c≥1:  If c<1, we will get b≤c<1, a≤b<1,  ⇒abc<1  but abc=1  so c<1 is not true, i.e. c≥1.    We know also   if p≤1, then p^x ≤1 for x≥0  if p≥1, then p^x ≥1 for x≥0    S=a^(b+c) b^(c+a) c^(a+b) =a^(b+c) ((1/(ac)))^(c+a) c^(a+b)   =(a^(b−a) /c^(c−b) )  since a≤1 and b−a≥0, we have  a^(b−a) ≤1  since c≥1 and c−b≥0, we have  c^(b−a) ≥1  ⇒S= (a^(b−a) /c^(c−b) )=((≤1)/(≥1))≤1    Way 2:  S=a^(b+c) b^(c+a) c^(a+b) =((a^(a+b+c) b^(c+a+b) c^(a+b+c) )/(a^a b^b c^c ))  =(((abc)^(a+b+c) )/(a^a b^b c^c ))=(1/(a^a b^b c^c ))=(1/(a^a b^b ((1/(ab)))^(1/(ab)) ))  =(((ab)^(1/(ab)) )/(a^a b^b ))  let′s look at function F(x,y)=(((xy)^(1/(xy)) )/(x^x y^y )),  the graph of F(x,y) see comment.    It has a maximum at (1,1) which  is F_(max) =1.  Hence for x, y>0, 0<F(x,y)≤1  ⇒S=(((ab)^(1/(ab)) )/(a^a b^b ))=F(a,b)=F(b,a)≤1

$${About}\:{the}\:{solution}\:{to}\:{question}: \\ $$ $${For}\:{a},{b},{c}>\mathrm{0}\:{and}\:{abc}=\mathrm{1},\:{prove} \\ $$ $${a}^{{b}+{c}} {b}^{{c}+{a}} {c}^{{a}+{b}} \leqslant\mathrm{1} \\ $$ $$ \\ $$ $${Way}\:\mathrm{1}: \\ $$ $${Let}'{s}\:{say}\:{a}\leqslant{b}\leqslant{c}. \\ $$ $${We}\:{can}\:{prove}\:{that}\:{a}\leqslant\mathrm{1}: \\ $$ $${If}\:{a}>\mathrm{1},\:{we}\:{will}\:{get}\:{b}\geqslant{a}>\mathrm{1},\:{c}\geqslant{b}>\mathrm{1}, \\ $$ $$\Rightarrow{abc}>\mathrm{1} \\ $$ $${but}\:{abc}=\mathrm{1}!\: \\ $$ $${so}\:{a}>\mathrm{1}\:{is}\:{not}\:{true},\:{i}.{e}.\:{a}\leqslant\mathrm{1}. \\ $$ $${Similarly}\:{we}\:{can}\:{also}\:{prove}\:{that}\:{c}\geqslant\mathrm{1}: \\ $$ $${If}\:{c}<\mathrm{1},\:{we}\:{will}\:{get}\:{b}\leqslant{c}<\mathrm{1},\:{a}\leqslant{b}<\mathrm{1}, \\ $$ $$\Rightarrow{abc}<\mathrm{1} \\ $$ $${but}\:{abc}=\mathrm{1} \\ $$ $${so}\:{c}<\mathrm{1}\:{is}\:{not}\:{true},\:{i}.{e}.\:{c}\geqslant\mathrm{1}. \\ $$ $$ \\ $$ $${We}\:{know}\:{also}\: \\ $$ $${if}\:{p}\leqslant\mathrm{1},\:{then}\:{p}^{{x}} \leqslant\mathrm{1}\:{for}\:{x}\geqslant\mathrm{0} \\ $$ $${if}\:{p}\geqslant\mathrm{1},\:{then}\:{p}^{{x}} \geqslant\mathrm{1}\:{for}\:{x}\geqslant\mathrm{0} \\ $$ $$ \\ $$ $${S}={a}^{{b}+{c}} {b}^{{c}+{a}} {c}^{{a}+{b}} ={a}^{{b}+{c}} \left(\frac{\mathrm{1}}{{ac}}\right)^{{c}+{a}} {c}^{{a}+{b}} \\ $$ $$=\frac{{a}^{{b}−{a}} }{{c}^{{c}−{b}} } \\ $$ $${since}\:{a}\leqslant\mathrm{1}\:{and}\:{b}−{a}\geqslant\mathrm{0},\:{we}\:{have} \\ $$ $${a}^{{b}−{a}} \leqslant\mathrm{1} \\ $$ $${since}\:{c}\geqslant\mathrm{1}\:{and}\:{c}−{b}\geqslant\mathrm{0},\:{we}\:{have} \\ $$ $${c}^{{b}−{a}} \geqslant\mathrm{1} \\ $$ $$\Rightarrow{S}=\:\frac{{a}^{{b}−{a}} }{{c}^{{c}−{b}} }=\frac{\leqslant\mathrm{1}}{\geqslant\mathrm{1}}\leqslant\mathrm{1} \\ $$ $$ \\ $$ $${Way}\:\mathrm{2}: \\ $$ $${S}={a}^{{b}+{c}} {b}^{{c}+{a}} {c}^{{a}+{b}} =\frac{{a}^{{a}+{b}+{c}} {b}^{{c}+{a}+{b}} {c}^{{a}+{b}+{c}} }{{a}^{{a}} {b}^{{b}} {c}^{{c}} } \\ $$ $$=\frac{\left({abc}\right)^{{a}+{b}+{c}} }{{a}^{{a}} {b}^{{b}} {c}^{{c}} }=\frac{\mathrm{1}}{{a}^{{a}} {b}^{{b}} {c}^{{c}} }=\frac{\mathrm{1}}{{a}^{{a}} {b}^{{b}} \left(\frac{\mathrm{1}}{{ab}}\right)^{\frac{\mathrm{1}}{{ab}}} } \\ $$ $$=\frac{\left({ab}\right)^{\frac{\mathrm{1}}{{ab}}} }{{a}^{{a}} {b}^{{b}} } \\ $$ $${let}'{s}\:{look}\:{at}\:{function}\:{F}\left({x},{y}\right)=\frac{\left({xy}\right)^{\frac{\mathrm{1}}{{xy}}} }{{x}^{{x}} {y}^{{y}} }, \\ $$ $${the}\:{graph}\:{of}\:{F}\left({x},{y}\right)\:{see}\:{comment}. \\ $$ $$ \\ $$ $${It}\:{has}\:{a}\:{maximum}\:{at}\:\left(\mathrm{1},\mathrm{1}\right)\:{which} \\ $$ $${is}\:{F}_{{max}} =\mathrm{1}. \\ $$ $${Hence}\:{for}\:{x},\:{y}>\mathrm{0},\:\mathrm{0}<{F}\left({x},{y}\right)\leqslant\mathrm{1} \\ $$ $$\Rightarrow{S}=\frac{\left({ab}\right)^{\frac{\mathrm{1}}{{ab}}} }{{a}^{{a}} {b}^{{b}} }={F}\left({a},{b}\right)={F}\left({b},{a}\right)\leqslant\mathrm{1} \\ $$

Commented bymrW1 last updated on 18/May/17

Commented byAbbas-Nahi last updated on 19/May/17

thanks for efforts

$$\boldsymbol{{thanks}}\:\boldsymbol{{for}}\:\boldsymbol{{efforts}} \\ $$

Commented bymrW1 last updated on 19/May/17

F(x,y)=(((xy)^(1/(xy)) )/(x^x y^y )) is really an interesting  function you can play with...

$${F}\left({x},{y}\right)=\frac{\left({xy}\right)^{\frac{\mathrm{1}}{{xy}}} }{{x}^{{x}} {y}^{{y}} }\:{is}\:{really}\:{an}\:{interesting} \\ $$ $${function}\:{you}\:{can}\:{play}\:{with}... \\ $$

Commented bymrW1 last updated on 19/May/17

Commented bymrW1 last updated on 19/May/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com