Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133628 by Ñï= last updated on 23/Feb/21

Π_(n=1) ^∞ (((n^2 +1)/n^2 ))=?  Π_(n=1) ^∞ (((4n^2 −4n+2)/(4n^2 −4n+1)))=?

n=1(n2+1n2)=?n=1(4n24n+24n24n+1)=?

Answered by Dwaipayan Shikari last updated on 23/Feb/21

Π_(n=1) ^∞ (1+(1/n^2 ))=((sinhπ)/π)     Π_(n=1) ^∞ (1+(x^2 /n^2 ))=((sinh(πx))/(πx))

n=1(1+1n2)=sinhππn=1(1+x2n2)=sinh(πx)πx

Answered by Dwaipayan Shikari last updated on 23/Feb/21

Π_(n=1) ^∞ (((4n^2 −4n+2)/(4n^2 −4n+1)))=Π_(n=1) ^∞ (1+(1/((2n−1)^2 )))  cosx=(1−((2x)/π))(1+((2x)/π))(1−((2x)/(3π)))(1+((2x)/(3π)))..  cos((x/2))=(1−(x/π))(1+(x/π))(1−(x/(3π)))...=Π_(n=1) ^∞ (1−(x^2 /(π^2 (2n−1)^2 )))  cosh(((πx)/2))=Π_(n=1) ^∞ (1+(x^2 /((2n−1)^2 )))  cosh((π/2))=Π_(n=1) ^∞ (1+(1/((2n−1)^2 )))⇒((e^(π/2) +e^(−(π/2)) )/2)

n=1(4n24n+24n24n+1)=n=1(1+1(2n1)2)cosx=(12xπ)(1+2xπ)(12x3π)(1+2x3π)..cos(x2)=(1xπ)(1+xπ)(1x3π)...=n=1(1x2π2(2n1)2)cosh(πx2)=n=1(1+x2(2n1)2)cosh(π2)=n=1(1+1(2n1)2)eπ2+eπ22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com