Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 13364 by tawa tawa last updated on 19/May/17

∫_(   0) ^(  ((3(√3))/2))    (x^3 /(√(4x^2  − 9)))  dx

$$\int_{\:\:\:\mathrm{0}} ^{\:\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\:\:\frac{\mathrm{x}^{\mathrm{3}} }{\sqrt{\mathrm{4x}^{\mathrm{2}} \:−\:\mathrm{9}}}\:\:\mathrm{dx} \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

you should change the limits of integral.  function have not real valves in interval:[0,((3(√3))/2)].

$${you}\:{should}\:{change}\:{the}\:{limits}\:{of}\:{integral}. \\ $$$${function}\:{have}\:{not}\:{real}\:{valves}\:{in}\:{interval}:\left[\mathrm{0},\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right]. \\ $$

Answered by ajfour last updated on 19/May/17

considering   I=∫(x^3 /(√(4x^2 −9))) dx  let t=4x^2 −9  dt=8xdx  tdt=32x^3 dx−9×8xdx       32x^3 dx =(t+9)dt  so,    I=(1/(32))∫ (((t+9)dt)/(√t))   =(1/(32))((3/2)t^(3/2) +18(√t))+C   =(3/(64))(4x^2 −9)^(3/2) +(9/(16))(4x^2 −9)+C  if the limits were appropriate  i would have tried to get an answer.

$${considering}\:\:\:{I}=\int\frac{{x}^{\mathrm{3}} }{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}}}\:{dx} \\ $$$${let}\:\boldsymbol{{t}}=\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9} \\ $$$${dt}=\mathrm{8}{xdx} \\ $$$${tdt}=\mathrm{32}{x}^{\mathrm{3}} {dx}−\mathrm{9}×\mathrm{8}{xdx} \\ $$$$\:\:\:\:\:\mathrm{32}{x}^{\mathrm{3}} {dx}\:=\left({t}+\mathrm{9}\right){dt} \\ $$$${so},\:\: \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{32}}\int\:\frac{\left({t}+\mathrm{9}\right){dt}}{\sqrt{{t}}} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{32}}\left(\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{3}/\mathrm{2}} +\mathrm{18}\sqrt{{t}}\right)+{C} \\ $$$$\:=\frac{\mathrm{3}}{\mathrm{64}}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{3}/\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{16}}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}\right)+{C} \\ $$$${if}\:{the}\:{limits}\:{were}\:{appropriate} \\ $$$${i}\:{would}\:{have}\:{tried}\:{to}\:{get}\:{an}\:{answer}. \\ $$

Commented by tawa tawa last updated on 19/May/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

((2x)/3)=i.tgt⇒dx=(3/2)i(1+tg^2 t)dt⇒  cost=(1/(√(1−((4x^2 )/9))))=(3/(√(9−4x^2 )))=((−3i)/(√(4x^2 −9)))  4x^2 −9=−4.(9/4)tg^2 t−9=−9(tg^2 t+1)=  =((−9)/(cos^2 t))      (i^2 =−1)  I=∫((((27)/8)i^3 .tg^3 t.(3/2)i.(1+tg^2 t)dt)/(3i/cost))=  =−((27)/(16))i∫((cost.tg^3 t)/(cos^2 t))dt=−((27i)/(16))∫((sin^3 t)/(cos^4 t))dt=  =−((27i)/(16))∫((sint(1−cos^2 t)dt)/(cos^4 t))=  =((−27i)/(16))∫[((sint)/(cos^4 t))−((sint)/(cos^2 t))]dt=  =((−27i)/(16))(−(1/(5cos^5 t))+(1/(cos^3 t)))+C.=  =((−27i)/(16))(−(1/5)(((4x^2 −9)^2 (√(4x^2 −9)))/(−3^5 i))+(((4x^2 −9)(√(4x^2 −9)))/(−27i)))+C=  =((−(4x^2 −9)(√(4x^2 −9)))/(16×45))(4x^2 −54)+C=F(x)  F(((3(√3))/2))=((−18(√(18)))/(16×45))(27−54)=+((81)/(40))(√2)  F(0)=((27i)/(16×45))(−54)=−((81)/(40))i  ⇒I=((81)/(40))((√2)−i)    .■

$$\frac{\mathrm{2}{x}}{\mathrm{3}}={i}.{tgt}\Rightarrow{dx}=\frac{\mathrm{3}}{\mathrm{2}}{i}\left(\mathrm{1}+{tg}^{\mathrm{2}} {t}\right){dt}\Rightarrow \\ $$$${cost}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{9}}}}=\frac{\mathrm{3}}{\sqrt{\mathrm{9}−\mathrm{4}{x}^{\mathrm{2}} }}=\frac{−\mathrm{3}{i}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}}} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}=−\mathrm{4}.\frac{\mathrm{9}}{\mathrm{4}}{tg}^{\mathrm{2}} {t}−\mathrm{9}=−\mathrm{9}\left({tg}^{\mathrm{2}} {t}+\mathrm{1}\right)= \\ $$$$=\frac{−\mathrm{9}}{{cos}^{\mathrm{2}} {t}}\:\:\:\:\:\:\left(\boldsymbol{{i}}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$${I}=\int\frac{\frac{\mathrm{27}}{\mathrm{8}}\boldsymbol{{i}}^{\mathrm{3}} .{tg}^{\mathrm{3}} {t}.\frac{\mathrm{3}}{\mathrm{2}}\boldsymbol{{i}}.\left(\mathrm{1}+{tg}^{\mathrm{2}} {t}\right){dt}}{\mathrm{3}\boldsymbol{{i}}/\boldsymbol{{cost}}}= \\ $$$$=−\frac{\mathrm{27}}{\mathrm{16}}\boldsymbol{{i}}\int\frac{\boldsymbol{{cost}}.\boldsymbol{{tg}}^{\mathrm{3}} \boldsymbol{{t}}}{\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{{t}}}\boldsymbol{{dt}}=−\frac{\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}}\int\frac{{sin}^{\mathrm{3}} {t}}{{cos}^{\mathrm{4}} {t}}{dt}= \\ $$$$=−\frac{\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}}\int\frac{{sint}\left(\mathrm{1}−{cos}^{\mathrm{2}} {t}\right){dt}}{{cos}^{\mathrm{4}} {t}}= \\ $$$$=\frac{−\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}}\int\left[\frac{{sint}}{{cos}^{\mathrm{4}} {t}}−\frac{{sint}}{{cos}^{\mathrm{2}} {t}}\right]{dt}= \\ $$$$=\frac{−\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}}\left(−\frac{\mathrm{1}}{\mathrm{5}\boldsymbol{{cos}}^{\mathrm{5}} \boldsymbol{{t}}}+\frac{\mathrm{1}}{\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{t}}}\right)+\boldsymbol{{C}}.= \\ $$$$=\frac{−\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}}\left(−\frac{\mathrm{1}}{\mathrm{5}}\frac{\left(\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} \sqrt{\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}}}{−\mathrm{3}^{\mathrm{5}} \boldsymbol{{i}}}+\frac{\left(\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}\right)\sqrt{\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}}}{−\mathrm{27}\boldsymbol{{i}}}\right)+\boldsymbol{{C}}= \\ $$$$=\frac{−\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}\right)\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{9}}}{\mathrm{16}×\mathrm{45}}\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{54}\right)+\boldsymbol{{C}}=\boldsymbol{{F}}\left({x}\right) \\ $$$${F}\left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\frac{−\mathrm{18}\sqrt{\mathrm{18}}}{\mathrm{16}×\mathrm{45}}\left(\mathrm{27}−\mathrm{54}\right)=+\frac{\mathrm{81}}{\mathrm{40}}\sqrt{\mathrm{2}} \\ $$$${F}\left(\mathrm{0}\right)=\frac{\mathrm{27}\boldsymbol{{i}}}{\mathrm{16}×\mathrm{45}}\left(−\mathrm{54}\right)=−\frac{\mathrm{81}}{\mathrm{40}}\boldsymbol{{i}} \\ $$$$\Rightarrow\boldsymbol{{I}}=\frac{\mathrm{81}}{\mathrm{40}}\left(\sqrt{\mathrm{2}}−\boldsymbol{{i}}\right)\:\:\:\:.\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com