Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 133692 by Dwaipayan Shikari last updated on 23/Feb/21

((sin1)/e)−((sin(2))/(2e^2 ))+((sin(3))/(3e^3 ))−((sin(4))/(4e^4 ))+...=tan^(−1) (((sin(1))/(cos(1)+e)))

$$\frac{{sin}\mathrm{1}}{{e}}−\frac{{sin}\left(\mathrm{2}\right)}{\mathrm{2}{e}^{\mathrm{2}} }+\frac{{sin}\left(\mathrm{3}\right)}{\mathrm{3}{e}^{\mathrm{3}} }−\frac{{sin}\left(\mathrm{4}\right)}{\mathrm{4}{e}^{\mathrm{4}} }+...={tan}^{−\mathrm{1}} \left(\frac{{sin}\left(\mathrm{1}\right)}{{cos}\left(\mathrm{1}\right)+{e}}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 23/Feb/21

Share an Idea to solve this.I have a strange way but i want   to see other′s perspective ?

$${Share}\:{an}\:{Idea}\:{to}\:{solve}\:{this}.{I}\:{have}\:{a}\:{strange}\:{way}\:{but}\:{i}\:{want}\: \\ $$$${to}\:{see}\:{other}'{s}\:{perspective}\:? \\ $$

Answered by mindispower last updated on 23/Feb/21

=((sin(k))/(ne^k ))=ImΣ_(m≥1) (−1)^m (e^(im) /(me^m ))  =Im−ln(1+e^((i−1)) )  =− arg(1+e^i .e^(−1) )=−tg^− (((e^(−1) sin(1))/(1+e^(−1) cos(1))))  =−tg^− (((sin(1))/(e+cos(1))))=(π/2)−tg^− (((e+cos(1))/(sin(1))))

$$=\frac{{sin}\left({k}\right)}{{ne}^{{k}} }={Im}\underset{{m}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{m}} \frac{{e}^{{im}} }{{me}^{{m}} } \\ $$$$={Im}−{ln}\left(\mathrm{1}+{e}^{\left({i}−\mathrm{1}\right)} \right) \\ $$$$=−\:{arg}\left(\mathrm{1}+{e}^{{i}} .{e}^{−\mathrm{1}} \right)=−{tg}^{−} \left(\frac{{e}^{−\mathrm{1}} {sin}\left(\mathrm{1}\right)}{\mathrm{1}+{e}^{−\mathrm{1}} {cos}\left(\mathrm{1}\right)}\right) \\ $$$$=−{tg}^{−} \left(\frac{{sin}\left(\mathrm{1}\right)}{{e}+{cos}\left(\mathrm{1}\right)}\right)=\frac{\pi}{\mathrm{2}}−{tg}^{−} \left(\frac{{e}+{cos}\left(\mathrm{1}\right)}{{sin}\left(\mathrm{1}\right)}\right) \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 23/Feb/21

Sir first line Σ_(m≥1) ^∞ (((−1)^(m+1) )/(me))e^(im)

$${Sir}\:{first}\:{line}\:\underset{{m}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}+\mathrm{1}} }{{me}}{e}^{{im}} \\ $$

Commented by mindispower last updated on 23/Feb/21

thanx yes sir sorry too busy this days   back soon

$${thanx}\:{yes}\:{sir}\:{sorry}\:{too}\:{busy}\:{this}\:{days}\: \\ $$$${back}\:{soon} \\ $$

Answered by Dwaipayan Shikari last updated on 23/Feb/21

log(1+ae^(iθ) )=log((√(2+2acosθ)))+itan^(−1) ((asinθ)/(acosθ+1))  ae^(iθ) −((a^2 e^(2iθ) )/2)+((a^3 e^(3iθ) )/3)−...=log((√(2+2acosθ)))+itan^(−1) ((asinθ)/(acosθ+1))  acosθ−(a^2 /2)cos2θ+(a^3 /3)cos3θ−...=log((√(2+2acosθ)))  asinθ−(a^2 /2)sin2θ+(a^3 /3)sin3θ−...=tan^(−1) ((asinθ)/(acosθ+1))  a=(1/e)

$${log}\left(\mathrm{1}+{ae}^{{i}\theta} \right)={log}\left(\sqrt{\mathrm{2}+\mathrm{2}{acos}\theta}\right)+{itan}^{−\mathrm{1}} \frac{{asin}\theta}{{acos}\theta+\mathrm{1}} \\ $$$${ae}^{{i}\theta} −\frac{{a}^{\mathrm{2}} {e}^{\mathrm{2}{i}\theta} }{\mathrm{2}}+\frac{{a}^{\mathrm{3}} {e}^{\mathrm{3}{i}\theta} }{\mathrm{3}}−...={log}\left(\sqrt{\mathrm{2}+\mathrm{2}{acos}\theta}\right)+{itan}^{−\mathrm{1}} \frac{{asin}\theta}{{acos}\theta+\mathrm{1}} \\ $$$${acos}\theta−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{cos}\mathrm{2}\theta+\frac{{a}^{\mathrm{3}} }{\mathrm{3}}{cos}\mathrm{3}\theta−...={log}\left(\sqrt{\mathrm{2}+\mathrm{2}{acos}\theta}\right) \\ $$$${asin}\theta−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sin}\mathrm{2}\theta+\frac{{a}^{\mathrm{3}} }{\mathrm{3}}{sin}\mathrm{3}\theta−...={tan}^{−\mathrm{1}} \frac{{asin}\theta}{{acos}\theta+\mathrm{1}} \\ $$$${a}=\frac{\mathrm{1}}{{e}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com