Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 133708 by Dwaipayan Shikari last updated on 23/Feb/21

Σ_(n=1) ^∞ ((cos((π+e)n))/n^4 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left(\left(\pi+{e}\right){n}\right)}{{n}^{\mathrm{4}} } \\ $$

Answered by mindispower last updated on 24/Feb/21

Σ_(n≥1) ((sin(nx))/n)=Im Σ_(n≥1) (e^(inx) /n)=Im(−ln(1−e^(ix) ))  −arctan(((−sin(x))/(1−cos(x)))))  =−(arctan(((1−cos(x))/(−sin(x)))−(π/2))=((π−x)/2)  ⇒Σ_(n≥1) ((−cos(nx))/n^2 )=(π/2)x−(x^2 /4)+c  ⇒−Σ((cos(nx))/n^2 )=((πx)/2)−(x^2 /4)−(π^2 /6)  −Σ_(n≥1) ((sin(nx))/n^3 )=((πx^2 )/4)−(x^3 /(12))−(π^2 /6)x  ⇒Σ_(n≥1) ((cos(nx))/n^4 )=((πx^3 )/(12))−(x^4 /(48))−((π^2 x^2 )/(12))+c,x=0⇒  c=ζ(4)  x=π+e  Σ_(n≥1) ((cos(π+e)n)/n^4 )=(π/(12))(π+e)^3 −(((π+e)^4 )/(48))−(π^2 /(12))(π+e)^2 +ζ(4)

$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({nx}\right)}{{n}}={Im}\:\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{e}^{{inx}} }{{n}}={Im}\left(−{ln}\left(\mathrm{1}−{e}^{{ix}} \right)\right) \\ $$$$\left.−{arctan}\left(\frac{−{sin}\left({x}\right)}{\mathrm{1}−{cos}\left({x}\right)}\right)\right) \\ $$$$=−\left({arctan}\left(\frac{\mathrm{1}−{cos}\left({x}\right)}{−{sin}\left({x}\right)}−\frac{\pi}{\mathrm{2}}\right)=\frac{\pi−{x}}{\mathrm{2}}\right. \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{−{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}}{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+{c} \\ $$$$\Rightarrow−\Sigma\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }=\frac{\pi{x}}{\mathrm{2}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$−\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }=\frac{\pi{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{3}} }{\mathrm{12}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}{x} \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{4}} }=\frac{\pi{x}^{\mathrm{3}} }{\mathrm{12}}−\frac{{x}^{\mathrm{4}} }{\mathrm{48}}−\frac{\pi^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{12}}+{c},{x}=\mathrm{0}\Rightarrow \\ $$$${c}=\zeta\left(\mathrm{4}\right) \\ $$$${x}=\pi+{e} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left(\pi+{e}\right){n}}{{n}^{\mathrm{4}} }=\frac{\pi}{\mathrm{12}}\left(\pi+{e}\right)^{\mathrm{3}} −\frac{\left(\pi+{e}\right)^{\mathrm{4}} }{\mathrm{48}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\left(\pi+{e}\right)^{\mathrm{2}} +\zeta\left(\mathrm{4}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 24/Feb/21

Great sir! I have also found so...

$${Great}\:{sir}!\:{I}\:{have}\:{also}\:{found}\:{so}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com