Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133856 by mathocean1 last updated on 24/Feb/21

   { ((U_0 =1)),((U_1 =2)),(( U_(n+2) =(3/2)U_(n+1) −(1/2)U_n )) :}  Determinate the smallest integer  n_0  such that ∀ n≥n_0  we have ∣U_n −3∣≤10^(−4)

$$ \\ $$$$\begin{cases}{{U}_{\mathrm{0}} =\mathrm{1}}\\{{U}_{\mathrm{1}} =\mathrm{2}}\\{\:{U}_{{n}+\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}}{U}_{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}{U}_{{n}} }\end{cases} \\ $$$${Determinate}\:{the}\:{smallest}\:{integer} \\ $$$${n}_{\mathrm{0}} \:{such}\:{that}\:\forall\:{n}\geqslant{n}_{\mathrm{0}} \:{we}\:{have}\:\mid{U}_{{n}} −\mathrm{3}\mid\leqslant\mathrm{10}^{−\mathrm{4}} \\ $$

Answered by mr W last updated on 25/Feb/21

x^2 −(3/2)x+(1/2)=0  (x−1)(x−(1/2))=0  x=1, (1/2)  ⇒U_n =A+(B/2^n )  U_0 =A+B=1  U_1 =A+(B/2)=2  ⇒B=−2, A=3  ⇒U_n =3−(1/2^(n−1) )  lim_(n→∞) U_n =3  ∣U_n −3∣=(1/2^(n−1) )≤10^(−4)   2^(n−1) ≥10^4   n≥1+log_2  10^4 =1+(4/(log 2))≈14.29  ⇒n_0 =15

$${x}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${x}=\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{U}_{{n}} ={A}+\frac{{B}}{\mathrm{2}^{{n}} } \\ $$$${U}_{\mathrm{0}} ={A}+{B}=\mathrm{1} \\ $$$${U}_{\mathrm{1}} ={A}+\frac{{B}}{\mathrm{2}}=\mathrm{2} \\ $$$$\Rightarrow{B}=−\mathrm{2},\:{A}=\mathrm{3} \\ $$$$\Rightarrow{U}_{{n}} =\mathrm{3}−\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{U}_{{n}} =\mathrm{3} \\ $$$$\mid{U}_{{n}} −\mathrm{3}\mid=\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\leqslant\mathrm{10}^{−\mathrm{4}} \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} \geqslant\mathrm{10}^{\mathrm{4}} \\ $$$${n}\geqslant\mathrm{1}+\mathrm{log}_{\mathrm{2}} \:\mathrm{10}^{\mathrm{4}} =\mathrm{1}+\frac{\mathrm{4}}{\mathrm{log}\:\mathrm{2}}\approx\mathrm{14}.\mathrm{29} \\ $$$$\Rightarrow{n}_{\mathrm{0}} =\mathrm{15} \\ $$

Commented by mathocean1 last updated on 27/Feb/21

wow it′s great sir...  Can you explain me how you find the  first and fourth lines please...

$${wow}\:{it}'{s}\:{great}\:{sir}... \\ $$$${Can}\:{you}\:{explain}\:{me}\:{how}\:{you}\:{find}\:{the} \\ $$$${first}\:{and}\:{fourth}\:{lines}\:{please}... \\ $$

Commented by mr W last updated on 27/Feb/21

we can use “characteristic root method”  to solve this kind of problems with  “recurrence relation”. you may get  some explanation here:  (just read the text after example 2.4.5.

$${we}\:{can}\:{use}\:``{characteristic}\:{root}\:{method}'' \\ $$$${to}\:{solve}\:{this}\:{kind}\:{of}\:{problems}\:{with} \\ $$$$``{recurrence}\:{relation}''.\:{you}\:{may}\:{get} \\ $$$${some}\:{explanation}\:{here}: \\ $$$$\left({just}\:{read}\:{the}\:{text}\:{after}\:{example}\:\mathrm{2}.\mathrm{4}.\mathrm{5}.\right. \\ $$

Commented by mr W last updated on 27/Feb/21

Commented by mr W last updated on 27/Feb/21

https://math.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame_IN/SMC%3A_MATH_339_-_Discrete_Mathematics_(Rohatgi)/Text/2%3A_Sequences/2.4%3A_Solving_Recurrence_Relations

Commented by mathocean1 last updated on 27/Feb/21

Super!    Thank you  very  much sir ...

$${Super}! \\ $$$$ \\ $$$${Thank}\:{you}\:\:{very}\:\:{much}\:{sir}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com