Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 133889 by EDWIN88 last updated on 25/Feb/21

 y′−y.tan x = cos x−2x sin x  y((π/6)) = 0 ⇒y(x)=?

yy.tanx=cosx2xsinxy(π6)=0y(x)=?

Answered by bemath last updated on 25/Feb/21

Answered by Ñï= last updated on 25/Feb/21

y′−ytanx=cosx−2xsinx  ⇒y′cosx−ysinx=cos^2 x−2xsinxcosx  ⇒(ycosx)′=cos^2 x−xsin2x  y=xcosx+(C/(cosx))  y(π/6)=(√3)π/12+((2C)/( (√3)))=0  C=−(π/8)  y=xcosx−(π/(8cosx))

yytanx=cosx2xsinxycosxysinx=cos2x2xsinxcosx(ycosx)=cos2xxsin2xy=xcosx+Ccosxy(π/6)=3π/12+2C3=0C=π8y=xcosxπ8cosx

Answered by mathmax by abdo last updated on 25/Feb/21

h→y^′ −ytanx =0 ⇒(y^′ /y)=tanx ⇒ln∣y∣=∫ ((sinx)/(cosx))dx =−ln∣cosx∣ +c ⇒  y =k.(1/(∣cosx∣))  solution on {x ∣cosx>0} ⇒y =(k/(cosx)) ⇒  y^′  =(k^′ /(cosx))+((ksinx)/(cos^2 x))  mvc method →(k^′ /(cosx))+((ksinx)/(cos^2 x))−(k/(cosx))((sinx)/(cosx))  =cosx−2xsinx ⇒k^′  =cos^2 x−2xsinx cosx ⇒  k =∫ cos^2 x dx−∫ xsin(2x)dx  but  ∫ cos^2 x dx =∫ ((1+cos(2x))/2)dx =(x/2)+(1/4)sin(2x) +c_0   ∫ xsin(2x)dx =_(by parts)   −(x/2)cos(2x)+(1/2)∫ cos(2x)dx  =−(x/2)cos(2x)+(1/4)sin(2x) +c_1  ⇒  k =(x/2)+(1/4)sin(2x)+(x/2)cos(2x)−(1/4)sin(2x) +λ ⇒  y(x)=(1/(cosx)){(x/2)+(x/2)cos(2x)+λ}  y((π/6))=0 ⇒(2/( (√3)))((π/(12))+(π/(12))×(1/2)+λ)=0 ⇒λ=((3π)/(12))=(π/4) ⇒  y(x)=(1/(cosx))((x/2)+(x/2)cos(2x)+(π/4))

hyytanx=0yy=tanxlny∣=sinxcosxdx=lncosx+cy=k.1cosxsolutionon{xcosx>0}y=kcosxy=kcosx+ksinxcos2xmvcmethodkcosx+ksinxcos2xkcosxsinxcosx=cosx2xsinxk=cos2x2xsinxcosxk=cos2xdxxsin(2x)dxbutcos2xdx=1+cos(2x)2dx=x2+14sin(2x)+c0xsin(2x)dx=bypartsx2cos(2x)+12cos(2x)dx=x2cos(2x)+14sin(2x)+c1k=x2+14sin(2x)+x2cos(2x)14sin(2x)+λy(x)=1cosx{x2+x2cos(2x)+λ}y(π6)=023(π12+π12×12+λ)=0λ=3π12=π4y(x)=1cosx(x2+x2cos(2x)+π4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com