Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 133897 by bemath last updated on 25/Feb/21

Find the least positive integer  that leaves a remainder 3 when divided by 7  , 4 when divided by 9 , and 8 when  divided by 11.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\mathrm{that}\:\mathrm{leaves}\:\mathrm{a}\:\mathrm{remainder}\:\mathrm{3}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{7} \\ $$$$,\:\mathrm{4}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{9}\:,\:\mathrm{and}\:\mathrm{8}\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{11}. \\ $$

Answered by john_santu last updated on 25/Feb/21

by Use Chinese Remainder theorem    determinant ((i,n_i ,N_i ,(y_i N_i ≡1 mod n_1 ),c_i ,(N_i y_i c_i )),(1,7,(9.11),(y_1 .9.11≡1 mod 7→y_1 =1),3,(297)),(2,9,(7.11),(y_2 .7.11≡1 mod 9→y_2 =2),4,(616)),(3,(11),(7.9),(y_3 .7.9≡1 mod 11→y_3 =7),8,(3528)))   X = Σ_i  N_i y_i c_i  = 4441  we have x≡X mod N ⇒x≡ 4441 (mod 693)  x≡ 283 (mod 693) or x = 693k + 283 ; k∈Z  then the least positive integer is x = 283

$${by}\:{Use}\:{Chinese}\:{Remainder}\:{theorem}\: \\ $$$$\begin{array}{|c|c|c|c|}{{i}}&\hline{{n}_{{i}} }&\hline{{N}_{{i}} }&\hline{{y}_{{i}} {N}_{{i}} \equiv\mathrm{1}\:{mod}\:{n}_{\mathrm{1}} }&\hline{{c}_{{i}} }&\hline{{N}_{{i}} {y}_{{i}} {c}_{{i}} }\\{\mathrm{1}}&\hline{\mathrm{7}}&\hline{\mathrm{9}.\mathrm{11}}&\hline{{y}_{\mathrm{1}} .\mathrm{9}.\mathrm{11}\equiv\mathrm{1}\:{mod}\:\mathrm{7}\rightarrow{y}_{\mathrm{1}} =\mathrm{1}}&\hline{\mathrm{3}}&\hline{\mathrm{297}}\\{\mathrm{2}}&\hline{\mathrm{9}}&\hline{\mathrm{7}.\mathrm{11}}&\hline{{y}_{\mathrm{2}} .\mathrm{7}.\mathrm{11}\equiv\mathrm{1}\:{mod}\:\mathrm{9}\rightarrow{y}_{\mathrm{2}} =\mathrm{2}}&\hline{\mathrm{4}}&\hline{\mathrm{616}}\\{\mathrm{3}}&\hline{\mathrm{11}}&\hline{\mathrm{7}.\mathrm{9}}&\hline{{y}_{\mathrm{3}} .\mathrm{7}.\mathrm{9}\equiv\mathrm{1}\:{mod}\:\mathrm{11}\rightarrow{y}_{\mathrm{3}} =\mathrm{7}}&\hline{\mathrm{8}}&\hline{\mathrm{3528}}\\\hline\end{array} \\ $$$$\:{X}\:=\:\sum_{{i}} \:{N}_{{i}} {y}_{{i}} {c}_{{i}} \:=\:\mathrm{4441} \\ $$$${we}\:{have}\:{x}\equiv{X}\:{mod}\:{N}\:\Rightarrow{x}\equiv\:\mathrm{4441}\:\left({mod}\:\mathrm{693}\right) \\ $$$${x}\equiv\:\mathrm{283}\:\left({mod}\:\mathrm{693}\right)\:{or}\:{x}\:=\:\mathrm{693}{k}\:+\:\mathrm{283}\:;\:{k}\in\mathbb{Z} \\ $$$${then}\:{the}\:{least}\:{positive}\:{integer}\:{is}\:{x}\:=\:\mathrm{283}\: \\ $$

Commented by talminator2856791 last updated on 25/Feb/21

 why is it called chinese remainder theorem?

$$\:\mathrm{why}\:\mathrm{is}\:\mathrm{it}\:\mathrm{called}\:\mathrm{chinese}\:\mathrm{remainder}\:\mathrm{theorem}? \\ $$

Answered by talminator2856791 last updated on 25/Feb/21

 7a+3 = 9b+4 = 11c+8   7a = 9b+1   b = 7k−4      9b+4 = 11c+8   9b = 11c+4   c = 9j−2      9(7k−4) = 11(9j−2)+4   63k−36 = 99j−18   63k = 99j+18   7k = 11j+2   j = 7d−4      9(7k−4) = 11(9(3)−2)+4   63k−36 = 279   63k = 315   k = 5      b = 7k−4   b = 31      9b+4 = 9(31)+4    = 283

$$\:\mathrm{7}{a}+\mathrm{3}\:=\:\mathrm{9}{b}+\mathrm{4}\:=\:\mathrm{11}{c}+\mathrm{8} \\ $$$$\:\mathrm{7}{a}\:=\:\mathrm{9}{b}+\mathrm{1} \\ $$$$\:{b}\:=\:\mathrm{7}{k}−\mathrm{4} \\ $$$$\: \\ $$$$\:\mathrm{9}{b}+\mathrm{4}\:=\:\mathrm{11}{c}+\mathrm{8} \\ $$$$\:\mathrm{9}{b}\:=\:\mathrm{11}{c}+\mathrm{4} \\ $$$$\:{c}\:=\:\mathrm{9}{j}−\mathrm{2} \\ $$$$\: \\ $$$$\:\mathrm{9}\left(\mathrm{7}{k}−\mathrm{4}\right)\:=\:\mathrm{11}\left(\mathrm{9}{j}−\mathrm{2}\right)+\mathrm{4} \\ $$$$\:\mathrm{63}{k}−\mathrm{36}\:=\:\mathrm{99}{j}−\mathrm{18} \\ $$$$\:\mathrm{63}{k}\:=\:\mathrm{99}{j}+\mathrm{18} \\ $$$$\:\mathrm{7}{k}\:=\:\mathrm{11}{j}+\mathrm{2} \\ $$$$\:{j}\:=\:\mathrm{7}{d}−\mathrm{4} \\ $$$$\: \\ $$$$\:\mathrm{9}\left(\mathrm{7}{k}−\mathrm{4}\right)\:=\:\mathrm{11}\left(\mathrm{9}\left(\mathrm{3}\right)−\mathrm{2}\right)+\mathrm{4} \\ $$$$\:\mathrm{63}{k}−\mathrm{36}\:=\:\mathrm{279} \\ $$$$\:\mathrm{63}{k}\:=\:\mathrm{315} \\ $$$$\:{k}\:=\:\mathrm{5} \\ $$$$\: \\ $$$$\:{b}\:=\:\mathrm{7}{k}−\mathrm{4} \\ $$$$\:{b}\:=\:\mathrm{31} \\ $$$$\: \\ $$$$\:\mathrm{9}{b}+\mathrm{4}\:=\:\mathrm{9}\left(\mathrm{31}\right)+\mathrm{4}\: \\ $$$$\:=\:\mathrm{283} \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com