Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 13394 by Tinkutara last updated on 19/May/17

Show that any circle with centre ((√2), (√3))  cannot pass through more than one  lattice point. [Lattice points are points  in cartesian plane, whose abscissa and  ordinate both are integers.]

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{any}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{centre}\:\left(\sqrt{\mathrm{2}},\:\sqrt{\mathrm{3}}\right) \\ $$$$\mathrm{cannot}\:\mathrm{pass}\:\mathrm{through}\:\mathrm{more}\:\mathrm{than}\:\mathrm{one} \\ $$$$\mathrm{lattice}\:\mathrm{point}.\:\left[\mathrm{Lattice}\:\mathrm{points}\:\mathrm{are}\:\mathrm{points}\right. \\ $$$$\mathrm{in}\:\mathrm{cartesian}\:\mathrm{plane},\:\mathrm{whose}\:\mathrm{abscissa}\:\mathrm{and} \\ $$$$\left.\mathrm{ordinate}\:\mathrm{both}\:\mathrm{are}\:\mathrm{integers}.\right] \\ $$

Answered by mrW1 last updated on 20/May/17

circle through lattice point (i,j) with i,jεZ  (i−(√2))^2 +(j−(√3))^2 =r^2     for any other point (x,y) on this circle,  (x−(√2))^2 +(y−(√3))^2 =r^2 =(i−(√2))^2 +(j−(√3))^2   (x−(√2))^2 −(i−(√2))^2 +(y−(√3))^2 −(j−(√3))^2 =0  (x+i−2(√2))(x−i)+(y+j−2(√3))(y−j)=0  (x+i)(x−i)−2(x−i)(√2)+(y+j)(y−j)−2(y−j)(√3)=0  x^2 −i^2 +y^2 −j^2 =2(x−i)(√2)+2(y−j)(√3)    case 1:  if x≠i and y=j  x^2 −i^2 =2(x−i)(√2)  ⇒(√2)=((x+i)/2)=((integer)/2)  but this is false, since (√2) is irrational.    case 2:  if x=i and y≠j  y^2 −j^2 =2(y−j)(√3)  ⇒(√3)=((y+j)/2)=((integer)/2)  but this is false, since (√3) is irrational.    case 3:  if x≠i and y≠j  (x^2 −i^2 +y^2 −j^2 )^2 =8(x−i)^2 +12(y−j)^2 +8(x−i)(y−j)(√6)  ⇒(√6)=(((x^2 −i^2 +y^2 −j^2 )^2 −8(x−i)^2 −12(y−j)^2 )/(8(x−i)(y−j)))   ⇒(√6)=((integer)/(integer))  but this is false, since (√6) is irrational.    ⇒x and y can not be integer both,  except x=i and y=j.

$${circle}\:{through}\:{lattice}\:{point}\:\left({i},{j}\right)\:{with}\:{i},{j}\epsilon\mathbb{Z} \\ $$$$\left({i}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left({j}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$${for}\:{any}\:{other}\:{point}\:\left({x},{y}\right)\:{on}\:{this}\:{circle}, \\ $$$$\left({x}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} =\left({i}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left({j}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\left({x}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\left({i}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −\left({j}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}+{i}−\mathrm{2}\sqrt{\mathrm{2}}\right)\left({x}−{i}\right)+\left({y}+{j}−\mathrm{2}\sqrt{\mathrm{3}}\right)\left({y}−{j}\right)=\mathrm{0} \\ $$$$\left({x}+{i}\right)\left({x}−{i}\right)−\mathrm{2}\left({x}−{i}\right)\sqrt{\mathrm{2}}+\left({y}+{j}\right)\left({y}−{j}\right)−\mathrm{2}\left({y}−{j}\right)\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{i}^{\mathrm{2}} +{y}^{\mathrm{2}} −{j}^{\mathrm{2}} =\mathrm{2}\left({x}−{i}\right)\sqrt{\mathrm{2}}+\mathrm{2}\left({y}−{j}\right)\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${case}\:\mathrm{1}: \\ $$$${if}\:{x}\neq{i}\:{and}\:{y}={j} \\ $$$${x}^{\mathrm{2}} −{i}^{\mathrm{2}} =\mathrm{2}\left({x}−{i}\right)\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\mathrm{2}}=\frac{{x}+{i}}{\mathrm{2}}=\frac{{integer}}{\mathrm{2}} \\ $$$${but}\:{this}\:{is}\:{false},\:{since}\:\sqrt{\mathrm{2}}\:{is}\:{irrational}. \\ $$$$ \\ $$$${case}\:\mathrm{2}: \\ $$$${if}\:{x}={i}\:{and}\:{y}\neq{j} \\ $$$${y}^{\mathrm{2}} −{j}^{\mathrm{2}} =\mathrm{2}\left({y}−{j}\right)\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\sqrt{\mathrm{3}}=\frac{{y}+{j}}{\mathrm{2}}=\frac{{integer}}{\mathrm{2}} \\ $$$${but}\:{this}\:{is}\:{false},\:{since}\:\sqrt{\mathrm{3}}\:{is}\:{irrational}. \\ $$$$ \\ $$$${case}\:\mathrm{3}: \\ $$$${if}\:{x}\neq{i}\:{and}\:{y}\neq{j} \\ $$$$\left({x}^{\mathrm{2}} −{i}^{\mathrm{2}} +{y}^{\mathrm{2}} −{j}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{8}\left({x}−{i}\right)^{\mathrm{2}} +\mathrm{12}\left({y}−{j}\right)^{\mathrm{2}} +\mathrm{8}\left({x}−{i}\right)\left({y}−{j}\right)\sqrt{\mathrm{6}} \\ $$$$\Rightarrow\sqrt{\mathrm{6}}=\frac{\left({x}^{\mathrm{2}} −{i}^{\mathrm{2}} +{y}^{\mathrm{2}} −{j}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{8}\left({x}−{i}\right)^{\mathrm{2}} −\mathrm{12}\left({y}−{j}\right)^{\mathrm{2}} }{\mathrm{8}\left({x}−{i}\right)\left({y}−{j}\right)}\: \\ $$$$\Rightarrow\sqrt{\mathrm{6}}=\frac{{integer}}{{integer}} \\ $$$${but}\:{this}\:{is}\:{false},\:{since}\:\sqrt{\mathrm{6}}\:{is}\:{irrational}. \\ $$$$ \\ $$$$\Rightarrow{x}\:{and}\:{y}\:{can}\:{not}\:{be}\:{integer}\:{both}, \\ $$$${except}\:{x}={i}\:{and}\:{y}={j}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com