Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133942 by mathocean1 last updated on 25/Feb/21

calculate L=∫_e^2  ^( e^3 )  ((ln(x)−1)/(xlnx)) dx  Please detail if possible^

$${calculate}\:{L}=\int_{{e}^{\mathrm{2}} } ^{\:{e}^{\mathrm{3}} } \:\frac{{ln}\left({x}\right)−\mathrm{1}}{{xlnx}}\:{dx} \\ $$$${Please}\:{detail}\:{if}\:{possibl}\overset{} {{e}} \\ $$

Answered by Ñï= last updated on 25/Feb/21

L=∫_e^2  ^e^3  ((lnx−1)/(xlnx))dx  =∫_e^2  ^e^3  ((1/x)−(1/(xlnx)))dx  =(lnx−lnlnx)∣_e^2  ^e^3    =(3−2)−(ln3−ln2)  =1−ln(3/2)

$${L}=\int_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \frac{{lnx}−\mathrm{1}}{{xlnx}}{dx} \\ $$$$=\int_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{xlnx}}\right){dx} \\ $$$$=\left({lnx}−{lnlnx}\right)\mid_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \\ $$$$=\left(\mathrm{3}−\mathrm{2}\right)−\left({ln}\mathrm{3}−{ln}\mathrm{2}\right) \\ $$$$=\mathrm{1}−{ln}\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by mnjuly1970 last updated on 25/Feb/21

ln(x)=u⇒(1/x)dx=du    𝛗=∫_2 ^( 3) ((u−1)/u)du          [u−ln(u)]_2 ^3 =3−ln(3)−2+ln(2  =1−ln((3/2))=ln(((2e)/3))..✓

$${ln}\left({x}\right)={u}\Rightarrow\frac{\mathrm{1}}{{x}}{dx}={du} \\ $$$$\:\:\boldsymbol{\phi}=\int_{\mathrm{2}} ^{\:\mathrm{3}} \frac{{u}−\mathrm{1}}{{u}}{du} \\ $$$$\:\:\:\:\:\:\:\:\left[{u}−{ln}\left({u}\right)\right]_{\mathrm{2}} ^{\mathrm{3}} =\mathrm{3}−{ln}\left(\mathrm{3}\right)−\mathrm{2}+{ln}\left(\mathrm{2}\right. \\ $$$$=\mathrm{1}−{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)={ln}\left(\frac{\mathrm{2}{e}}{\mathrm{3}}\right)..\checkmark \\ $$

Answered by Olaf last updated on 25/Feb/21

I = ∫_e^2  ^e^3  ((lnx−1)/(xlnx)) dx  I = ∫_e^2  ^e^3  (((lnx+1)/(xlnx))−2((1/x)/(lnx))) dx  I = ∫_e^2  ^e^3  (((d(xlnx))/(xlnx))−2((d(lnx))/(lnx)))  I = [ln(xlnx)−2ln(lnx)]_e^2  ^e^3    I = [ln((x/(lnx)))]_e^2  ^e^3    I = ln((e^3 /3))−ln((e^2 /2)) = ln(((2e)/3)) = 1+ln(2/3)

$$\mathrm{I}\:=\:\int_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \frac{\mathrm{ln}{x}−\mathrm{1}}{{x}\mathrm{ln}{x}}\:{dx} \\ $$$$\mathrm{I}\:=\:\int_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \left(\frac{\mathrm{ln}{x}+\mathrm{1}}{{x}\mathrm{ln}{x}}−\mathrm{2}\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{ln}{x}}\right)\:{dx} \\ $$$$\mathrm{I}\:=\:\int_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \left(\frac{{d}\left({x}\mathrm{ln}{x}\right)}{{x}\mathrm{ln}{x}}−\mathrm{2}\frac{{d}\left(\mathrm{ln}{x}\right)}{\mathrm{ln}{x}}\right) \\ $$$$\mathrm{I}\:=\:\left[\mathrm{ln}\left({x}\mathrm{ln}{x}\right)−\mathrm{2ln}\left(\mathrm{ln}{x}\right)\right]_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \\ $$$$\mathrm{I}\:=\:\left[\mathrm{ln}\left(\frac{{x}}{\mathrm{ln}{x}}\right)\right]_{{e}^{\mathrm{2}} } ^{{e}^{\mathrm{3}} } \\ $$$$\mathrm{I}\:=\:\mathrm{ln}\left(\frac{{e}^{\mathrm{3}} }{\mathrm{3}}\right)−\mathrm{ln}\left(\frac{{e}^{\mathrm{2}} }{\mathrm{2}}\right)\:=\:\mathrm{ln}\left(\frac{\mathrm{2}{e}}{\mathrm{3}}\right)\:=\:\mathrm{1}+\mathrm{ln}\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com