Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133964 by mathocean1 last updated on 26/Feb/21

calculate   I=∫_0 ^( 1)  (1/(1+e^x )) dx

$${calculate}\: \\ $$$${I}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\:{dx} \\ $$

Answered by bobhans last updated on 26/Feb/21

∫ ((e^x +1−e^x )/(1+e^x )) dx = x−∫ (e^x /(1+e^x )) dx  = x−ln (1+e^x )+c    I= [ x−ln (1+e^x ) ]_0 ^1  = 1−ln (1+e)+ln (2)  = 1+ln ((2/(1+e))) = ln (((2e)/(1+e)))

$$\int\:\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{1}−\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} }\:\mathrm{dx}\:=\:\mathrm{x}−\int\:\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} }\:\mathrm{dx} \\ $$$$=\:\mathrm{x}−\mathrm{ln}\:\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)+\mathrm{c} \\ $$$$ \\ $$$$\mathcal{I}=\:\left[\:\mathrm{x}−\mathrm{ln}\:\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\:\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\mathrm{1}−\mathrm{ln}\:\left(\mathrm{1}+\mathrm{e}\right)+\mathrm{ln}\:\left(\mathrm{2}\right) \\ $$$$=\:\mathrm{1}+\mathrm{ln}\:\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{e}}\right)\:=\:\mathrm{ln}\:\left(\frac{\mathrm{2e}}{\mathrm{1}+\mathrm{e}}\right) \\ $$

Answered by Olaf last updated on 26/Feb/21

I = ∫_0 ^1 (dx/(1+e^x ))  I = ∫_0 ^1 (((1+e^x )/(1+e^x ))−(e^x /(1+e^x )))dx  I = [x−ln(1+e^x )]_0 ^1   I = 1−ln(1+e)+ln2  I = 1+ln((2/(1+e)))

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{e}^{{x}} } \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}+{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }−\frac{{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }\right){dx} \\ $$$$\mathrm{I}\:=\:\left[{x}−\mathrm{ln}\left(\mathrm{1}+{e}^{{x}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{I}\:=\:\mathrm{1}−\mathrm{ln}\left(\mathrm{1}+{e}\right)+\mathrm{ln2} \\ $$$$\mathrm{I}\:=\:\mathrm{1}+\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{e}}\right) \\ $$

Answered by mathmax by abdo last updated on 26/Feb/21

I =∫_0 ^1  (dx/(e^x  +1)) changement e^x  =t give x=lnt ⇒  I =∫_1 ^e  (dt/(t(t+1))) =∫_1 ^e  ((1/t)−(1/(t+1)))dt =[ln∣(t/(t+1))∣]_1 ^e  =ln((e/(e+1)))−ln((1/2))  =1−ln(e+1)+ln(2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \:+\mathrm{1}}\:\mathrm{changement}\:\mathrm{e}^{\mathrm{x}} \:=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{lnt}\:\Rightarrow \\ $$$$\mathrm{I}\:=\int_{\mathrm{1}} ^{\mathrm{e}} \:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{t}+\mathrm{1}\right)}\:=\int_{\mathrm{1}} ^{\mathrm{e}} \:\left(\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt}\:=\left[\mathrm{ln}\mid\frac{\mathrm{t}}{\mathrm{t}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{\mathrm{e}} \:=\mathrm{ln}\left(\frac{\mathrm{e}}{\mathrm{e}+\mathrm{1}}\right)−\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\mathrm{1}−\mathrm{ln}\left(\mathrm{e}+\mathrm{1}\right)+\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com