Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 13403 by Tinkutara last updated on 19/May/17

If tan (A − B) = 1, sec (A + B) = (2/(√3)) ,  then prove that the smallest positive  value of B is ((19π)/(24)) .

$$\mathrm{If}\:\mathrm{tan}\:\left({A}\:−\:{B}\right)\:=\:\mathrm{1},\:\mathrm{sec}\:\left({A}\:+\:{B}\right)\:=\:\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\:, \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive} \\ $$$$\mathrm{value}\:\mathrm{of}\:{B}\:\mathrm{is}\:\frac{\mathrm{19}\pi}{\mathrm{24}}\:. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

excuse me ,but i think your answer (((19π)/(24))) is not true.

$${excuse}\:{me}\:,{but}\:{i}\:{think}\:{your}\:{answer}\:\left(\frac{\mathrm{19}\pi}{\mathrm{24}}\right)\:{is}\:{not}\:{true}. \\ $$$$ \\ $$

Commented by prakash jain last updated on 20/May/17

B=((7π)/(24))  A=((37π)/(24))  A+B=((44π)/(24)) , sec (((44π)/(24)))=(2/(√3))  A−B=((30π)/(24)), tan (((30π)/(24)))=1

$$\mathrm{B}=\frac{\mathrm{7}\pi}{\mathrm{24}} \\ $$$$\mathrm{A}=\frac{\mathrm{37}\pi}{\mathrm{24}} \\ $$$${A}+{B}=\frac{\mathrm{44}\pi}{\mathrm{24}}\:,\:\mathrm{sec}\:\left(\frac{\mathrm{44}\pi}{\mathrm{24}}\right)=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}} \\ $$$${A}−{B}=\frac{\mathrm{30}\pi}{\mathrm{24}},\:\mathrm{tan}\:\left(\frac{\mathrm{30}\pi}{\mathrm{24}}\right)=\mathrm{1} \\ $$

Answered by ajfour last updated on 19/May/17

tan (A−B)=1  ⇒ A−B=(π/4)+nπ         ....(i)  sec (A+B)=(2/(√3)) ⇒cos (A+B)=((√3)/2)  ⇒ A+B=2mπ±(π/6)      .....(ii)  (ii)−(i) gives:  2B=(2m−n)π−(π/(12))     ,  or   ...(a)  2B=(2m−n)π−((5π)/(12))                ...(b)  if B is to be smallest and positive  let us take  2m−n=1  in  (b)  B=((7π)/(24)) .

$$\mathrm{tan}\:\left({A}−{B}\right)=\mathrm{1} \\ $$$$\Rightarrow\:{A}−{B}=\frac{\pi}{\mathrm{4}}+{n}\pi\:\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$$\mathrm{sec}\:\left({A}+{B}\right)=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\:\Rightarrow\mathrm{cos}\:\left({A}+{B}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{A}+{B}=\mathrm{2}{m}\pi\pm\frac{\pi}{\mathrm{6}}\:\:\:\:\:\:.....\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right)\:{gives}: \\ $$$$\mathrm{2}{B}=\left(\mathrm{2}{m}−{n}\right)\pi−\frac{\pi}{\mathrm{12}}\:\:\:\:\:,\:\:{or}\:\:\:...\left({a}\right) \\ $$$$\mathrm{2}{B}=\left(\mathrm{2}{m}−{n}\right)\pi−\frac{\mathrm{5}\pi}{\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left({b}\right) \\ $$$${if}\:{B}\:{is}\:{to}\:{be}\:{smallest}\:{and}\:{positive} \\ $$$${let}\:{us}\:{take}\:\:\mathrm{2}{m}−{n}=\mathrm{1}\:\:{in}\:\:\left({b}\right) \\ $$$${B}=\frac{\mathrm{7}\pi}{\mathrm{24}}\:. \\ $$

Commented by ajfour last updated on 19/May/17

someone resolve the conflict please...

$${someone}\:{resolve}\:{the}\:{conflict}\:{please}... \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

if you put:2m−n=2⇒2B=2π−((5π)/(12))=((19π)/(12))  ⇒B=((19π)/(24))

$${if}\:{you}\:{put}:\mathrm{2}{m}−{n}=\mathrm{2}\Rightarrow\mathrm{2}{B}=\mathrm{2}\pi−\frac{\mathrm{5}\pi}{\mathrm{12}}=\frac{\mathrm{19}\pi}{\mathrm{12}} \\ $$$$\Rightarrow{B}=\frac{\mathrm{19}\pi}{\mathrm{24}} \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

tg^2 (A+B)=sec^2 (A+B)−1=(4/3)−1=(1/3)  ⇒tg(A+B)=±((√3)/3)  tg(2B)=((tg(A+B)−tg(A−B))/(1+tg(A+B).tg(A−B)))=((((√3)/3)−1)/(1+((√3)/3)))=  =(((√3)−3)/((√3)+3))=((−((√3)−1))/((√3)+1))=((−(4−2(√(3))))/2)=−(2−(√3))=−tg(π/(12))  =tg(π−(π/(12)))=tg((11π)/(12))⇒2B=((11π)/(12))⇒B=((11π)/(24))  .■  tg(2B)=((((−(√3))/3)−1)/(1−((√3)/3)))=(((√3)+3)/((√3)−3))=(((√3)+1)/(1−(√3)))=−(2+(√3))  =−tg(((5π)/(12)))=tg(π−((5π)/(12)))=tg((7π)/(12))⇒B=((7π)/(24)) .■

$${tg}^{\mathrm{2}} \left({A}+{B}\right)={sec}^{\mathrm{2}} \left({A}+{B}\right)−\mathrm{1}=\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{tg}\left({A}+{B}\right)=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${tg}\left(\mathrm{2}{B}\right)=\frac{{tg}\left({A}+{B}\right)−{tg}\left({A}−{B}\right)}{\mathrm{1}+{tg}\left({A}+{B}\right).{tg}\left({A}−{B}\right)}=\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}−\mathrm{1}}{\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}= \\ $$$$=\frac{\sqrt{\mathrm{3}}−\mathrm{3}}{\sqrt{\mathrm{3}}+\mathrm{3}}=\frac{−\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\sqrt{\mathrm{3}}+\mathrm{1}}=\frac{−\left(\mathrm{4}−\mathrm{2}\sqrt{\left.\mathrm{3}\right)}\right.}{\mathrm{2}}=−\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)=−{tg}\frac{\pi}{\mathrm{12}} \\ $$$$={tg}\left(\pi−\frac{\pi}{\mathrm{12}}\right)={tg}\frac{\mathrm{11}\pi}{\mathrm{12}}\Rightarrow\mathrm{2}{B}=\frac{\mathrm{11}\pi}{\mathrm{12}}\Rightarrow{B}=\frac{\mathrm{11}\pi}{\mathrm{24}}\:\:.\blacksquare \\ $$$${tg}\left(\mathrm{2}{B}\right)=\frac{\frac{−\sqrt{\mathrm{3}}}{\mathrm{3}}−\mathrm{1}}{\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}=\frac{\sqrt{\mathrm{3}}+\mathrm{3}}{\sqrt{\mathrm{3}}−\mathrm{3}}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{1}−\sqrt{\mathrm{3}}}=−\left(\mathrm{2}+\sqrt{\mathrm{3}}\right) \\ $$$$=−{tg}\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)={tg}\left(\pi−\frac{\mathrm{5}\pi}{\mathrm{12}}\right)={tg}\frac{\mathrm{7}\pi}{\mathrm{12}}\Rightarrow{B}=\frac{\mathrm{7}\pi}{\mathrm{24}}\:.\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com