Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 13403 by Tinkutara last updated on 19/May/17

If tan (A − B) = 1, sec (A + B) = (2/(√3)) ,  then prove that the smallest positive  value of B is ((19π)/(24)) .

Iftan(AB)=1,sec(A+B)=23,thenprovethatthesmallestpositivevalueofBis19π24.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

excuse me ,but i think your answer (((19π)/(24))) is not true.

excuseme,butithinkyouranswer(19π24)isnottrue.

Commented by prakash jain last updated on 20/May/17

B=((7π)/(24))  A=((37π)/(24))  A+B=((44π)/(24)) , sec (((44π)/(24)))=(2/(√3))  A−B=((30π)/(24)), tan (((30π)/(24)))=1

B=7π24A=37π24A+B=44π24,sec(44π24)=23AB=30π24,tan(30π24)=1

Answered by ajfour last updated on 19/May/17

tan (A−B)=1  ⇒ A−B=(π/4)+nπ         ....(i)  sec (A+B)=(2/(√3)) ⇒cos (A+B)=((√3)/2)  ⇒ A+B=2mπ±(π/6)      .....(ii)  (ii)−(i) gives:  2B=(2m−n)π−(π/(12))     ,  or   ...(a)  2B=(2m−n)π−((5π)/(12))                ...(b)  if B is to be smallest and positive  let us take  2m−n=1  in  (b)  B=((7π)/(24)) .

tan(AB)=1AB=π4+nπ....(i)sec(A+B)=23cos(A+B)=32A+B=2mπ±π6.....(ii)(ii)(i)gives:2B=(2mn)ππ12,or...(a)2B=(2mn)π5π12...(b)ifBistobesmallestandpositiveletustake2mn=1in(b)B=7π24.

Commented by ajfour last updated on 19/May/17

someone resolve the conflict please...

someoneresolvetheconflictplease...

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

if you put:2m−n=2⇒2B=2π−((5π)/(12))=((19π)/(12))  ⇒B=((19π)/(24))

ifyouput:2mn=22B=2π5π12=19π12B=19π24

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/May/17

tg^2 (A+B)=sec^2 (A+B)−1=(4/3)−1=(1/3)  ⇒tg(A+B)=±((√3)/3)  tg(2B)=((tg(A+B)−tg(A−B))/(1+tg(A+B).tg(A−B)))=((((√3)/3)−1)/(1+((√3)/3)))=  =(((√3)−3)/((√3)+3))=((−((√3)−1))/((√3)+1))=((−(4−2(√(3))))/2)=−(2−(√3))=−tg(π/(12))  =tg(π−(π/(12)))=tg((11π)/(12))⇒2B=((11π)/(12))⇒B=((11π)/(24))  .■  tg(2B)=((((−(√3))/3)−1)/(1−((√3)/3)))=(((√3)+3)/((√3)−3))=(((√3)+1)/(1−(√3)))=−(2+(√3))  =−tg(((5π)/(12)))=tg(π−((5π)/(12)))=tg((7π)/(12))⇒B=((7π)/(24)) .■

tg2(A+B)=sec2(A+B)1=431=13tg(A+B)=±33tg(2B)=tg(A+B)tg(AB)1+tg(A+B).tg(AB)=3311+33==333+3=(31)3+1=(423)2=(23)=tgπ12=tg(ππ12)=tg11π122B=11π12B=11π24.tg(2B)=331133=3+333=3+113=(2+3)=tg(5π12)=tg(π5π12)=tg7π12B=7π24.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com