Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134070 by mohammad17 last updated on 27/Feb/21

∫_0 ^( x) (x−t)^(−(1/2)) (t)^(5/2) dt

0x(xt)12(t)52dt

Commented by mohammad17 last updated on 27/Feb/21

help me sir

helpmesir

Answered by Dwaipayan Shikari last updated on 27/Feb/21

∫_0 ^x (x−t)^(−(1/2)) t^(5/2) dt      t=xu  =x∫_0 ^1 (1/( (√x)))(1−u)^(−(1/2)) x^(5/2) u^(5/2) du  =x^3 ∫_0 ^1 (1−u)^(−(1/2)) u^(5/2) du=x^3 (((√π)Γ((7/2)))/(Γ(3)))=((5π)/(16))x^3

0x(xt)12t52dtt=xu=x011x(1u)12x52u52du=x301(1u)12u52du=x3πΓ(72)Γ(3)=5π16x3

Answered by mathmax by abdo last updated on 27/Feb/21

Φ=∫_0 ^x (x−t)^(−(1/2)) t^(5/2)  dt ⇒Φ=_(t=xu)   ∫_0 ^1 (x−xu)^(−(1/2)) (xu)^(5/2)  xdu  =x^(1/2) .x^(5/2)  ∫_0 ^1 u^((5/2)+1−1) (1−u)^(1−(1/2)−1)  du =x^3  ∫_0 ^1  u^((7/2)−1) (1−u)^(1/2)  du  =x^3  B((7/2),(1/2)) =x^3  ((Γ((7/2))Γ((1/2)))/(Γ((7/2)+(1/2))))=x^3 (√π)((Γ((7/2)))/(Γ(4))) =((√π)/(3!))x^3 Γ((7/2)) but  Γ((7/2))=Γ((5/2)+1) =(5/2)Γ((5/2))=(5/2)Γ((3/2)+1) =(5/2).(3/2)Γ((3/2))  =((15)/4)Γ((1/2)+1) =((15)/4)(1/2)Γ((1/2)) =((15)/8)(√π) ⇒  Φ =((√π)/6)x^3 ((15)/8)(√π)=((5π)/(16))x^3

Φ=0x(xt)12t52dtΦ=t=xu01(xxu)12(xu)52xdu=x12.x5201u52+11(1u)1121du=x301u721(1u)12du=x3B(72,12)=x3Γ(72)Γ(12)Γ(72+12)=x3πΓ(72)Γ(4)=π3!x3Γ(72)butΓ(72)=Γ(52+1)=52Γ(52)=52Γ(32+1)=52.32Γ(32)=154Γ(12+1)=15412Γ(12)=158πΦ=π6x3158π=5π16x3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com