Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 134108 by Eric002 last updated on 27/Feb/21

(d/dx)((((x^3 +1)/(x^3 −1)))^(1/4) )

ddx(x3+1x314)

Answered by Ñï= last updated on 27/Feb/21

(d/dx)((((x^3 +1)/(x^3 −1)))^(1/4) )  =(d/dx)e^((1/4)ln((x^3 +1)/(x^3 −1)))   =(d/dx)e^((1/4)ln(x^3 +1)−ln(x^3 −1))   =(((x^3 +1)/(x^3 −1)))^(1/4) [(1/4)(((3x^2 )/(x^3 +1))−((3x^2 )/(x^3 −1)))]

ddx(x3+1x314)=ddxe14lnx3+1x31=ddxe14ln(x3+1)ln(x31)=x3+1x314[14(3x2x3+13x2x31)]

Answered by EDWIN88 last updated on 28/Feb/21

let y = (((x^3 +1)/(x^3 −1)))^(1/4)    y^4  = ((x^3 +1)/(x^3 −1)) ⇒ ln y^4  = ln (x^3 +1)−ln (x^3 −1)  (4/y).y′ = ((3x^2 )/(x^3 +1)) − ((3x^2 )/(x^3 −1)) = 3x^2 (((−2)/(x^6 −1)))  y′ = −((3x^2 )/(2(x^6 −1))).(((x^3 +1)/(x^3 −1)))^(1/4)  .

lety=x3+1x314y4=x3+1x31lny4=ln(x3+1)ln(x31)4y.y=3x2x3+13x2x31=3x2(2x61)y=3x22(x61).x3+1x314.

Answered by MJS_new last updated on 28/Feb/21

(d/dx)[h(((f(x))/(g(x))))]=h′(((f(x))/(g(x))))×(d/dx)[((f(x))/(g(x)))]=  =h′(((f(x))/(g(x))))×((f′(x)g(x)−f(x)g′(x))/(g(x)^2 ))  (d/dx)[(((x^3 +1)/(x^3 −1)))^(1/4) ]=(1/4)(((x^3 +1)/(x^3 −1)))^(−3/4) ×((3x^2 (x^3 −1)−(x^3 +1)3x^2 )/((x^3 −1)^2 ))=  =(1/4)(((x^3 −1)/(x^3 +1)))^(3/4) ×((−6x^2 )/((x^3 −1)^2 ))=  =−((3x^2 )/(2(x^3 +1)^(3/4) (x^3 −1)^(5/4) ))

ddx[h(f(x)g(x))]=h(f(x)g(x))×ddx[f(x)g(x)]==h(f(x)g(x))×f(x)g(x)f(x)g(x)g(x)2ddx[(x3+1x31)1/4]=14(x3+1x31)3/4×3x2(x31)(x3+1)3x2(x31)2==14(x31x3+1)3/4×6x2(x31)2==3x22(x3+1)3/4(x31)5/4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com